Нахождение функции, описывающей собственные колебания мембраны

Материалы о физике / Собственные колебания пластин / Нахождение функции, описывающей собственные колебания мембраны

Страница 3
,

где - постоянная, которую для удобства последующих выкладок берем со знаком минус, ничего не предполагая при этом о ее знаке.

(2.2.9)

Из соотношения (2.2.8) получаем однородное дифференциальное уравнения второго порядка для функции :

,

а для функции следующую краевую задачу:

(2.2.10)

Таким образом, сама задача о собственных значениях состоит в решении однородного уравнения в частных производных при заданных граничных условиях. Снова применим метод разделения переменных. Пусть

(2.2.10)

и не равна тождественно нулю. Подставляем выражение функции в уравнение и, поделив обе части уравнения на , приведем его к виду

.

Правая часть равенства (2.2.10) является функцией только переменной y, а левая – только x. Фиксируя, например, некоторые значения x и меняя (или наоборот), получаем, что правая и левая части равенства при изменении своих аргументов сохраняют постоянное значение, пусть оно равно .

Тогда из данного соотношения получаем два однородных дифференциальных уравнения второго порядка:

1.

2.

где и - постоянные разделения переменных, причем . При этом граничные условия для и вытекают из соответствующих условий для функции .

,

,

,

.

Получаем следующие одномерные задачи на собственные значения:

(2.2.11)

(2.2.12)

- линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Таким образом, общее решение данного уравнения зависит от параметра . Рассмотрим отдельно случаи, когда параметра отрицателен, равен нулю, положителен.

1) При задача не имеет нетривиальных решений. Общее решение уравнения имеет вид

Страницы: 1 2 3 4 5 6 7 8