Анализ и моделирование методов когерентной оптики в медицине и биологии
Когерентная оптика может выполнять два типа операции в биологии и медицине. Во-первых, она может производить операции, которые можно осуществлять и другими способами. Ее можно использовать для обработки данных, распознавания патологических тканей или обнаружения движения объекта. Разумеется, не все, что может быть сделано средствами когерентной оптики, должно быть выполнено с ее помощью. Трудности заключаются в демонстрации преимуществ когерентной оптики перед некогерентной (которая часто дешевле, удобнее и более естественна) или перед цифровыми методами. Когерентная оптика будет целесообразной только там, где необходимость ее использования достоверно установлена. Во-вторых, когерентная оптика может производить операции, которые нельзя осуществить другими методами, например голографическое формирование изображений и обнаружение малых смещений с помощью голографии. Проблема в этом случае состоит в том, чтобы показать, что такие операции нужны.
При переходе от идеи к общепринятому практическому использованию любое применение когерентной оптики должно проходить три стадии. Мы назовем эти стадии как «доказательство», «техника» и «внедрение». На первой стадии мы должны выяснить не то, «может ли данная процедура быть выполнена посредством когерентной оптики», а «должна ли эта процедура выполняться с помощью когерентной оптики». При этом в свою очередь встают два вопроса. Первый: «Действительно ли предлагаемую операцию стоит выполнять?» и второй: «Является ли когерентная оптика наилучшим средством для этого?». До тех пор пока операция не является действительно необходимой, она не будет иметь значительного успеха. Действительно ли медицина нуждается в записи трехмерных изображений людей? Если нет, то голографическое формирование изображений тела не будет успешным. Даже в том случае, если и необходима операция, когерентная оптика может являться всего лишь одним из способов ее выполнения. В случае обработки трансаксиальных томографических изображений альтернативными подходами, заслуживающими внимания, представляются цифровые методы и некогерентиая оптическая обработка. Когерентная оптика должна доказать, что она является лучшим (по какому-либо критерию) способом. Если когерентный оптический метод проходит оба теста на стадии доказательства, он может перейти в техническую стадию. Здесь проблема заключается в доведении очень сложной когерентной оптической системы до уровня падежного прибора, управлять которым можно без специального знания когерентной оптики. Третья стадия является последним препятствием и самым сложным, так как здесь появляются многие нетехнические моменты.
Подавляющее большинство методов когерентной оптики находится на первой стадии. Это не означает, что они не приведут к окончательному признанию. Разумеется, некоторые приведут, а некоторые нет. В настоящей главе делается попытка дать обзор различных применений, исследованных в последнее время.
Мы начнем с наиболее очевидных применений и постепенно будем переходить к менее очевидным. Таким образом, мы начинаем с рассмотрения формирования когерентного оптического изображения (микроскопического и макроскопического, трехмерного и двумерного) и перейдем к формированию неоптического изображения с использованием когерентного света (в акустике и радиологии). Так как очень многое здесь включает формирование трехмерного изображения и различные формы томографии, то в конце главы дается приложение, связывающее все эти понятия.
Следующей областью нашего исследования будет обработка сигналов, которая включает улучшение изображения и обработку данных, полученных другими средствами, например электрокардиограмм, электроэнцефалограмм. Затем мы рассмотрим представление изображений — чрезвычайно важное использование когерентной оптики. Когерентную оптику можно использовать также для выделения или воспроизведения некоторых характеристик объекта (размеров, контуров, движения и т.д.), этому посвящен один раздел. Последним из рассматриваемых применений является распознавание образов. Здесь имеется очень большой материал, так что для получения общего представления деталями придется пренебречь.
- Формирование оптического изображения в когерентном свете
- Формирование изображения в оптическом микроскопе
- Формирование трехмерного оптического макроскопического
- Формирование двумерного изображения
- Неоптические методы формирования изображений
- Акустическая голография
- Формирование изображений методом кодирования апертуры
- Трансаксиальная томография
- Формирование трехмерных рентгеновских изображений
- Кодирование длины волны
- Обработка сигналов
- Представление изображений
- Другие методы трехмерного отображения
- Извлечение данных об объекте
- Распознавание образов
- Выводы
- Приложение: различные методы формирования трехмерных изображений