Формирование изображений методом кодирования апертуры

Страница 1

Формирование изображений методом кодирования апертуры — это принятое название безлинзового двухступенчатого процесса формирования изображений в точности по аналогии с обычной голографией. В обоих случаях первый шаг состоит в записи кодированного изображения объекта. В голографии кодированное изображение называется «голограммой». В случае формирования изображения с кодированием апертуры не возникло никакого общепринятого названия для кодированного изображения.

По аналогии с «голограммой» будем называть его «кодограммой». Вторым шагом является формирование трехмерного изображения путем декодирования голограммы или кодограммы. Голограммы образуются в результате интерференции между опорным и объектным волновым фронтами. Кодограммы образуются при использовании самоизлучающих объектов, отбрасывающих тени специально построенных масок на регистрирующую плоскость. Если маска оказывается френелевской зонной пластинкой, как было первоначально предложено Мертцем и Юнгом [1.21, 22], кодограмма объекта идентична голограмме похожего объекта, так что методы декодирования будут идентичны. Если кодирующая маска весьма отличается от френелевской зонной пластинки (которая есть не что иное, как бинарная голограмма точечного объекта), то будут необходимы отличные методы декодирования.

Можно показать, что кодограмма является сверткой картины объекта с апертурой (причем масштаб каждой из них зависит от геометрии схемы записи и объемных свойств объекта). Чанг и др. [1.23] различают три типа декодирующих операций: корреляцию, дифракцию и операцию, обратную свертке. Корреляция с кодирующей картиной маски является средством для превращения ее в точку (если автокорреляционная функция изображения маски имеет резкий пик). Дифракция полезна в случае, если кодирующая маска является самоизображающей (например, если это— френелевская зонная пластинка или голограмма точки, рассчитанная на вычислительной машине). Операция, обратная свертке, включает комплексную фильтрацию Фурье-образа кодограммы. Как показал Чанг и др. [1.23] и многие другие исследователи, у каждой декодирующей схемы есть свои преимущества.

Формирование изображений с кодированием апертуры дополняет обычную голографию в том, что этот метод работает лучше всего на очень коротких длинах волн, где запись интерференционной картины затруднена. На коротких длинах воли даже очертания маленькой маски отбрасывают резкие теин на большие расстояния. Для апертуры размером 2 а излучение с длиной волны л будет отбрасывать резкую тень вплоть до расстояний а2/л. Таким образом, для у и рентгеновских лучей расстояние, на которое отбрасывается тень, для такой апертуры может быть в 104 раз больше, чем расстояние при использовании той же апертуры в видимом свете. Пространственное разрешение изображения грубо оценивается как 2 а, так что ясно, что для одной и той же схемы записи можно использовать апертуру, гораздо более точно создающую тень, и, следовательно, получать гораздо более высокое разрешение при использовании у- и рентгеновских лучей, чем с видимым светом. С другой стороны, в случае формирования изображений с кодированной апертурой мы не можем достигнуть разрешения, ограниченного дифракцией на любых длинах волн.

Чтобы доказать это, заметим, что дифракционный предел разрешения примерно равен л, а в случае кодированной апертуры — а, который должен быть много больше л. При современном уровне развития техники разрешение редко бывает лучше нескольких миллиметров.

Рассмотрим, как образование тени кодирует информацию о трехмерном объекте. При предположении, что каждая точка объекта излучает независимо, тень есть просто сумма (или интеграл в случае непрерывного объекта) теней от каждой отдельной точки. Тень от каждой точки объекта имеет ту же форму, что и маска. Если сдвигать точку влево, тень движется вправо. Плоскость маски задает центр вращения точкой объекта и каждой проекцией маски. По мере того как точка смешается по направлению к маске, тень увеличивается, и наоборот. Таким образом, если известны размеры маски и ее положение относительно плоскости тени, то можно сделать заключение о том, в каком месте должна была находиться точка объекта. Более того, такой вывод, может быть, сделай оптически с использованием когерентного света.

Если в качестве маски выбрать зонную пластинку Френеля [1.21, 22], то можно получить изображение с помощью когерентной оптики. Передвижение в поперечном направлении зонной пластинки перемещает ее фокус в том же направлении. Изменение ее увеличения изменяет ее фокусное расстояние. Таким образом, трехмерный объект создает трехмерное изображение. Если маска не подходит для такого непосредственного декодирования, можно использовать когерентную оптическую согласованную фильтрацию, чтобы превратить вход в форме маски в точечный выход [1.24]. Различные согласованные фильтры могут быть использованы для декодирования разных глубин объекта. Аналогично для той же цели может использоваться нскогерептная оптическая корреляция [1.25].

Страницы: 1 2 3

Препарат цистон отзывы.