Формирование трехмерного оптического макроскопического
изображения
Для нас, людей, наиболее интересными являются макроскопические биологические объекты, а именно мы сами и наши важнейшие «составные части». Мы хотим получать изображения и производить измерения. Когерентная оптика все это выполняет.
Рис. 1.6. Одно и то же изображение со спеклами и без спеклов.
Измерения можно отделить от формирования изображений. В этом разделе мы будем иметь дело исключительно с формированием оптических изображений средствами когерентной оптики. В качестве конкурента здесь выступает обыкновенная фотография.
Голография является очевидным подходом к решению вопроса о формировании биологического изображения. Гара и др. [1.11] было детально описано устройство для записи и измерения точной трехмерной информации о больших объектах. Голограмма записывалась при помощи обыкновенного импульсного лазера. Для получения трехмерного изображения с точными размерами при восстановлении мы должны использовать ту же длину волны, что и при записи. Причина вполне понятна. Голограмме, подобно линзе, присущи ограничения, связанные с фундаментальными законами дифракции. Так, если R есть отношение длины волны света, используемого при восстановлении, к длине волны записывающего света, то поперечное увеличение системы равно R, но продольное увеличение будет равно R2. Это означает, что оба увеличения равны только в случае, если R = R2 , т.е. R=l. Таким образом, чтобы получить реальное неискаженное изображение, мы должны освещать голограмму восстанавливающим пучком, идентичным опорному пучку во всех отношениях, кроме одного: восстанавливающий луч обратен по направлению. Гара и др. [1.11] производил запись с помощью импульсного лазера, с тем чтобы «заморозить» движение объекта, а затем воспроизводил реальное изображение с помощью лазера, работающего в непрерывном режиме с той же длиной волны.
И, наконец, изображение сканировалось в трех измерениях с целью описания объекта как поверхности, находящейся на расстоянии S(x, у) от плоскости голограммы в каждой точке (x, у) в этой плоскости. Полезность этого метода для формирования изображения всего тела очевидна. Необходимость же иметь такое детализированное изображение всего тела не так очевидна, так что этот мощный инструмент ждет задачи, оправдывающей затраты на него. Пригодность этого метода для биологических задач была продемонстрирована при формировании изображений моделей черепа с последующим выделением профилей. На рис. 1.7 показаны горизонтальные профили модели, сделанные Гара и др. [1.11]. Были сделаны как микрометрические, так и голографические измерения положения меток, нанесенных на череп. Среднеквадратичное значение разницы между указанными координатами равнялось — 40 мкм. Ту же самую задачу по выделению трехмерных координат поверхности для свободно расположенных объектов пытались решить другими, существенно некогерентными методами. Эту задачу можно назвать «стереометрией». Стереометрия не подразумевает классическую стереофотографию или «фотограмметрию*. Скорее, это есть общее название, данное любому методу трехмерного измерения (не обязательно формированию изображений).
Рис. 1.7. Профили модели черепа, полученные при помощи голографического метода Тара и др. [1.11] (С разрешения исследовательской лаборатории фирмы
General Motors Corporation)
Наиболее распространенным видом стереометрии является расчет на ЭВМ или даже когерентно-оптическая расшифровка стереофотографических пар [1.12]. Новый метод, использующий временные задержки для кодирования пространственной информации [1.13], непосредственно выдает стереометрическую информацию о нескольких тысячах точек в секунду. Точность определения глубины этим последним методом (называемым лазерной стереометрией) на порядок хуже точности метода Гара и др., но зато информация поступает в реальном времени и отпадает необходимость в вычислительной машине.