Другие методы трехмерного отображения

Голография широко используется для трехмерного отображения серии двумерных изображений, полученных обычным образом.

Излагаемая тема требует детального анализа этого метода, однако в нашем распоряжении имеется несколько коротких обзоров [1.44. 45]. Редмен снова был среди пионеров, решавших эту проблему как для изображений, получаемых с помощью электронного микроскопа [1.46], так и для рентгеновских изображений [1.47]. Вместо того чтобы повторять здесь указанные обзоры, мы рассмотрим достаточно подробно один метод трехмерного отображения двумерных изображений. Предшествующие достижения подробно описаны в указанных обзорах.

Метод трехмерного отображения, который мы хотим исследовать, пригоден, в частности, для отображения всего тела и, следовательно, представляет интерес для биологов, медиков, ортопедов, нейрологов и т.д.

Упомянутый нами метод основан на использовании мультиплексных цилиндрических голограмм. Голограмма записывается в два полностью автоматизированных этапа по схеме, которая была применена Кроссом [1.48]. На первом этапе получают серию фотографий объекта с разных ракурсов таким образом, что объект находится более или менее точно в центре воображаемого круга, с границ которого и производится фотографирование. При этом либо объект помещается на вращающемся столе и (поворачивается перед неподвижным наблюдателем, либо вокруг объекта перемещается фотоаппарат. Угловой шаг между фотографиями должен быть небольшим по причинам, которые поясним позднее. Для многих целей достаточно иметь одну фотографию на каждый градус изменения ракурса. Оказывается, что для многих биологических применений требование к качеству изображения может быть весьма умеренным, так что для реализации имеющейся возможности может быть использован фиксированный круг, образованный, например, 360 равномерно распределенными недорогими фотоаппаратами. Второй этап состоит в мультиплицировании полученных фотографий на цилиндрической голограмме. Обычно вытянутая по вертикали голограмма — полоска шириной в 1° освещается лазерным светом, прошедшим через рассеиватель (если используется одно фотографическое разделение). На некотором расстоянии вдали находится плоскость голограммы. Плоскость голограммы маскируется вертикальной щелью шириной 2рr/N, где r — радиус цилиндрической голограммы, которая будет использоваться (~25 см), a N— число мультиплицируемых изображений (360 в использованном нами примере). Опорный пучок формируется точечным источником, расположенным выше транспаранта с изображением объекта. В результате N голограмм оказываются последовательно записанными на ленте пленки длиной 2рr. После проявления (и обычно отбеливания) голограмма сворачивается в цилиндр, чтобы получить цилиндрическую голограмму. Для наблюдения изображения мы освещаем голограмму сверху с помощью точечного источника, а чтобы видеть объект под различными ракурсами, мы либо обходим вокруг голограммы, либо вращаем голограмму. Наблюдаемый объект, который кажется совершенно реальным и трехмерным, оказывается как бы плавающим в центре цилиндра. Кросс [1.48] был также первым, кто предложил интересное и полезное изменение этой схемы. Кроме изменения ракурса па объект между фотографиями он изменяет также и сам объект. Таким образом, стало возможным наблюдать такие действия, как улыбка, прощальный жест рукой, воздушный поцелуй и т. д., если они были сфотографированы. Движение изображения видно тогда, когда вращается цилиндр или когда наблюдатель вращается вокруг него. Можно снимать фильм непрерывно и таким образом зарегистрировать события произвольной продолжительности, а затем их воспроизвести в виде трехмерного изображения.