Исследование явления дифракции света на компакт-диске

Материалы о физике / Исследование явления дифракции света на компакт-диске

Страница 6

Цель.

Следует проверить, что при отражении от диэлектрика свет действительно оказывается частично поляризованным. При отражении же света от проводника (металла), явление поляризации не наблюдается. При выполнении данного задания используется прибор №1.

1. Вставьте один кусочек поляроидной пленки в держатель для нее.

2. Установите лазер в нулевое положение.

3. В зажиме укрепите препарат c диэлектрической пластинкой (пластмассой).

4. Медленно поворачивая поворотную планку, наблюдайте на экране за уменьшением интенсивности отраженного луча.

5. Найдите и измерьте такой угол падения, при котором интенсивность окажется наименьшей.

6. По измеренному углу Брюстера, вычислите показатель преломления данной пластмассы.

7. Рассчитайте погрешность измерения показателя преломления.

8. Замените препарат с диэлектриком на препарат с металлической пластинкой. Повторите предыдущие наблюдения. В выводе отметьте, наблюдается ли поляризация света при отражении от металла.

Цель работы: Углубить представления о взаимодействии света с веществом; ознакомиться с элементарными представлениями и законами поглощения света; пронаблюдать экспериментально поглощение света в твердых средах и в растворах.

Оборудование: фотоэлектрический колориметр, набор кювет, окрашенные полимерные пленки, концентрированные растворы различных веществ, шприц.

Поглощением (абсорбцией) света называется явление уменьшения энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии.

Поглощение света в веществе описывается законом Бугера:

, (1)

где I0 и I интенсивность плоской монохроматической световой волны на входе и выходе слоя поглощающего вещества толщиной x, a - коэффициент поглощения, зависящий от длины волны света, химической природы и состояния вещества.

Коэффициент поглощения не зависит от интенсивности падающего света (закон Ламберта).

При толщине слоя х = 1/a интенсивность света I по сравнению с I0 уменьшается в е» 2,72 раз. Размерность коэффициента поглощения м-1 или см-1.

Коэффициент поглощения зависит от длины волны света и для различных веществ различен. Например, одноатомные газы и пары металлов обладают близким к нулю коэффициентом поглощения и лишь для очень узких спектральных областей наблюдаются резкие максимумы поглощения (так называемый линейчатый спектр поглощения). Коэффициент поглощения для металлов имеет большие значения (103 – 105 см-1) и поэтому металлы являются непрозрачными для света. Коэффициент поглощения диэлектриков обычно невелик (10-3 – 10-5 см-1). Стекла, прозрачные полимерные пленки, жидкости и растворы имеют селективное (избирательное) поглощение света в определенных интервалах длин волн, когда a резко возрастает, и наблюдаются сравнительно широкие полосы поглощения.

Для характеристики поглощающей способности образца используется или коэффициент пропускания Т, который обычно измеряется в процентах

, (2)

или оптическая плотность образца D:

(3)

Согласно закону Бугера коэффициент пропускания экспоненциально уменьшается в зависимости от толщины образца (слоя вещества):

(4)

В то же время оптическая плотность зависит от толщины образца линейно:

, (5)

т.е. оптическая плотность вещества прямо пропорциональна толщине слоя. Поэтому для оценки поглощающей способности образца применение оптической плотности более удобно, чем применение коэффициента поглощения.

Для растворов веществ в не поглощающих растворителях выполняется закон Бера:

Монохроматический показатель поглощения раствора поглощающего вещества в непоглощающем растворителе пропорционален концентрации с раствора:

, (6)

где al1 – коэффициент поглощения однопроцентного раствора данного вещества, с – концентрация раствора в процентах.

Подставляя (6) в (1) и (5), получаем обобщенный закон Бугера – Ламберта – Бера, учитывающий как толщину слоя поглощающего вещества, так и концентрацию раствора. Этот закон может быть записан либо через интенсивность проходящего света, либо через оптическую плотность:

(7,8)

То обстоятельство, что оптическая плотность раствора D пропорциональна концентрации с растворенного поглощающего вещества, лежит в основе колориметрии (от лат. color - цвет)– метода определения концентрации растворенного вещества по оптической плотности раствора.

Рис. 2

Страницы: 1 2 3 4 5 6 7 8 9