Взаимодействие фотонов электромагнитного излучения с веществом

Материалы о физике / Фотоны, спектры и цвет / Взаимодействие фотонов электромагнитного излучения с веществом

Страница 3

здесь I0 – интенсивность (мощность) входящего пучка фотонов, I – интенсивность (мощность) выходящего пучка, L – толщина слоя вещества, через которое проходит свет (длина оптического пути); T – [оптическое] пропускание; D – оптическая плотность; k(λ) – [десятичный] показатель поглощения, характеризующий свойства вещества и зависящий от длины волны (в вакууме) λ поглощаемого света. Эта зависимость называется спектром поглощения вещества.

Для растворов пигментов в непоглощающих растворителях k(λ) = e(l)·[C], где e(l) – молярный коэффициент поглощения, [C] – концентрация растворенного вещества, моль/л.

Спектры k(λ), e(l) и D(l) не зависят от концентрации. Спектр пропускания T(l,C), наоборот, зависит, однако именно этот спектр, с учетом спектральной зависимости нашего субъективного восприятия, однозначно определяет цвет пигмента.

Рассмотрим связь поглощения и цвета на примере растворов растительного пигмента антоциана, который обуславливает окраску цветов и зрелых плодов и ягод. Спектры поглощения антоциана (точнее, смеси антоцианов) приведены на рис. 7.

Эксперимент выполнен ученицей 9б класса МОУ Лицея «Физико-техническая школа» (г. Обнинск) Юлией Дуфлот под руководством преподавателя химии высшей категории Е.В. Тетенькиной. Спектры измерены на спектрофотометре «Specord» (Германия). Математическая обработка (интерполирование, экстраполирование и сглаживание спектров) проведена в среде MatLab (MatLab®, the MathWorks, Inc.) автором, сотрудником ВНИИ СХРАЭ РАСХН (г. Обнинск, 109 км Киевского шоссе) Тетенькиным В.Л.

Рис. 7. Спектры поглощения антоцианов из ягод черники при разных pH растворов.

Цвет линий и точек приблизительно соответствует окраске растворов пигментов (в скобках – pH образцов по универсальному индикатору): образцы №1 (2,5) и №2 (4) красные; №3 (6,5) розовый; №4 (8) зеленоватый; №5 (10) светло-желтый.

Как видно из рисунка 7, спектры антоциана очень подвижны, зависят от pH раствора и, как показал эксперимент, могут соответствовать практически любому цвету раствора. Широкая цветовая гамма антоцианов и простота смены цвета объясняет, почему именно этот пигмент выбран природой для окраски. Локализация пигмента в вакуолях (рис. 9) позволяет создать любую его концентрацию и придать окраске необходимую густоту и насыщенность.

При движении от кислой к щелочной среде можно отметить монотонные изменения спектров поглощения антоцианов:

1) уменьшается амплитуда поглощения в видимой области спектра, т.е. растворы становятся более светлыми (прозрачными);

2) максимум в видимой области смещается в длинноволновую сторону, что приводит к характерным изменениям цвета растворов;

3) увеличивается амплитуда поглощения в фиолетовой (ультрафиолетовой) области спектра, доминирование поглощения в которой придает растворам желтоватый оттенок.

Рис. 8. Антоциан дельфинол.

Присоединения глюкозы превращает антоцианидин дельфинидол в антоциан (моно или дигликозид).

У пигментов все 7 двойных связей сопряжены, одна из них (красная) – полуизолирована.

Катион металла у оксоний–аниона кислорода определяет цвет пигментов: Fe – синий, Mo – фиолетовый, Ca – пурпурный. Цвет зависит также от диссоциации OH групп и, следовательно, от pH раствора пигментов.

Рис. 9. Схема строения клетки растений.

Все пигменты фотосинтеза (хлорофиллы, каротиноиды) находятся во внутренних мембранах хлоропластов, а водорастворимые антоцианы локализованы в изолированных мешках — вакуолях. В живых листьях антоцианы поглощают избыточную солнечную радиацию в видимой области спектра (максимум поглощения антоцианов расположен в области энергетического максимума излучения солнца) и ультрафиолет, защищая, таким образом, важные молекулярные компоненты клеток от повреждения. В цветах и зрелых плодах антоцианы обуславливают их окраску, хлоропласты отсутствуют, а вакуоль с раствором антоцианов занимает почти весь объем клетки, что придает окраске необходимые густоту, колорит, яркость и насыщенность.

При увеличении концентрации возрастает вклад слабых полос в формирование цвета раствора. В частности, например, образец 4 при высокой концентрации, вероятно, будет «казаться» синим, а образец 5 – зеленоватым.

Структурная химическая формула одного из антоцианов показана на рис. 8. Большое число двойных сопряженных связей и анион оксония в гетероцикле приводят к общему смещению главного длинноволнового максимума ~ в середину оптического диапазона. Конкретное положение и амплитуда максимума зависят от pH раствора и катиона (рис. 8).

Страницы: 1 2 3 4