Взаимодействие фотонов электромагнитного излучения с веществом

Материалы о физике / Фотоны, спектры и цвет / Взаимодействие фотонов электромагнитного излучения с веществом

Страница 2

1) электрон и фотон находятся на расстоянии взаимодействия;

2) резонанс энергий: разность энергий основного S0 и возбужденного Sk состояний электрона равна энергии фотона (поэтому резонансные взаимодействия);

3) направление дипольного момента перехода S0 → Sk в пространстве ~ совпадает с направлением колебаний вектора E электрического поля фотона (в растворе молекулы ориентированы в пространстве хаотично, и 1/3 из них всегда удовлетворяет этому условию);

4) совпадают спины (спиновые состояния) электрона и фотона.

Рис. 4. Структура внешней электронной оболочки сложной органической молекулы.

S0 – основное состояние, молекулярная орбиталь, на которой находятся внешние оптические электроны; S1–S6 – вакантные орбитали; A – захват фотона, поглощение (возбуждение молекулы); F – излучение фотона, флуоресценция (люминесценция, свечение молекулы); R1 – тепловая релаксация возбужденных состояний (с потерей части энергии фотона); R2 – тепловая релаксация в основное состояние (с полной потерей энергии) – фотон исчезает.

Слева – виртуальная структура в газовой фазе (по аналогии с атомными спектрами), которой соответствует линейчатый спектр поглощения; справа – реальная структура с «размытыми» электронными уровнями вследствие внутри– и межмолекулярных взаимодействий. Структуре соответствует гладкий широкополосный спектр поглощения (рис. 5).

В виртуальной структуре возбужденные уровни не взаимодействуют, переходы между ними маловероятны, поэтому основной канал дезактивации возбужденных состояний – флуоресценция (почти без потери энергии).

В реальной структуре уровни существенно перекрываются, и возбуждение ~ за 10–12 с скатывается на нижнюю орбиталь, на которой задерживается на время 10–9–10–8 с, в течение которого переходит в основное состояние путем тепловой релаксации (R2) или с излучением фотона флуоресценции (F).

Рис. 5. Спектры поглощения сложной органической молекулы (пигмента).

Показан виртуальный линейчатый спектр молекулы в газовой фазе и реальный широкополосный спектр поглощения молекулы в растворе. Соответствующие электронные структуры молекулы приведены на рис. 4.

При соблюдении этих условий электрон с большой вероятностью захватит фотон и перейдет на соответствующую вакантную орбиталь Sk. Поскольку таких уровней много, поглощение молекулы в целом характеризуется спектром поглощения. Для электронной структуры, показанной на рис. 4, соответствующие спектры поглощения приведены на рис. 5.

У сложных органических молекул в конденсированных средах вследствие внутри– и межмолекулярных взаимодействий возникает большая неопределенность энергий молекулярных орбиталей, электронные уровни становятся размытыми и перекрываются между собой (рис. 4), в результате чего возбужденный электрон быстро (~ за 1 пс) скатывается на нижний возбужденный уровень S1 (см. подпись к рис. 4), откуда он переходит в основное состояние либо путем безизлучательной тепловой релаксации, либо с излучением фотона флуоресценции. Энергия этих фотонов значительно меньше, чем у исходного, захваченного фотона, а излучаются они в направлении, перпендикулярном направлению перехода S0 → S1; за время жизни возбуждения (среднее время пребывания электрона на S1) молекула в растворе успевает повернуться на любой угол, поэтому направление движения и поляризация фотона флуоресценции могут быть любые, случайные, а спиновое состояние – как у электрона на S1 орбитали (как правило, совпадает с исходным). В результате резонансных взаимодействий фотона и электрона (захвата фотона молекулой) этот фотон исчезает. Вместо него может появиться новый фотон с меньшей энергией, произвольным направлением движения, поляризацией и спином (спин электрона может измениться в процессе релаксации), т.е. меняются ВСЕ фундаментальные свойства фотона или он вообще исчезает.

Рис. 6. Схема измерения коэффициентов и спектров поглощения пигментов в растворе.

Параллельный (сфокусированный) пучок фотонов, как правило, монохроматический с переменной длиной волны, пропускают через кювету с раствором пигмента. При прохождении через раствор пучок ослабляется, т.к. часть фотонов поглощается молекулами пигмента. Процесс поглощения описывается законом Бугера–Ламберта–Бера[2].

Закон Бугера–Ламберта–Бера можно выразить следующими формулами:

T = I/I0 = 10–D; D = k(l)·L;

Страницы: 1 2 3 4