Волновая теория фотона

Материалы о физике / Волновая теория фотона

Страница 1

Если взять несколько шестигранников разных размеров и разместить их на наклонной плоскости, то все они будут скатываться вниз с одной и той же постоянной скоростью , но с разной частотой (табл. 1).

Таблица 1. Кинематические параметры движения тел.

Форма тел

, м

t, с

V, м/с

Цилиндрические

0,008

0,010

0,0!3

2,43

2,30

2,05

0,83

0,89

0,99

-

-

-

Шестигранные

0,0065

0,0080

0,0130

5,68

5,67

5,67

0,18

0,18

0,18

27,69

22,50

13,85

Обратим внимание на то, что при увеличении радиуса шестигранника частота его движения уменьшается так же, как и у фотона. Конечно, у фотона нет плоскости, по которой он мог бы перемещаться, как тела, представленные в табл. 1. Однако центр масс электромагнитной модели фотона описывает укороченную циклоиду, осью симметрии которой является прямолинейная ось ОХ, лежащая в плоскости его поляризации.

Начнем с вывода уравнений движения центра масс фотона. Поскольку центр масс фотона движется в плоскости поляризации и в рамках аксиомы Единства пространства – материи – времени, то для описания его движения по волновой траектории необходимо иметь два параметрических уравнения.

Так как центр масс фотона движется относительно наблюдателя и относительно геометрического центра , который движется прямолинейно со скоростью , то для полного описания такого движения необходимо иметь две системы отсчета: неподвижную и подвижную .

Амплитуда колебаний центра масс фотона будет равна радиусу его вращения относительно геометрического центра фотона:

.

Обратим внимание на небольшую величину амплитуды колебаний центра масс фотона в долях длины его волны или радиуса вращения.

Уравнения движения центра масс фотона относительно подвижной системы имеют вид параметрических уравнений окружности :

Страницы: 1 2 3 4 5 6