Статические моменты площади. Центр тяжести площади.
Рассмотрим произвольную фигуру (поперечное сечение бруса), связанную с координатными осями и (рис. 2.1). Выделим элемент площади с координатами , . По аналогии с выражением для момента силы относительно какой-либо оси можно составить выражения и для момента площади, которое называется моментом площади. Так, произведение элемента площади на расстояние от оси .
(2.1)
называется статическим моментом элемента площади относительно оси .
Рис. 2.1
Аналогично:
(2.2)
Просуммировав такие произведения по всей площади фигуры, получим соответственно статические моменты относительно осей и :
; (2.3)
Пусть , - координаты центра тяжести фигуры. Продолжая аналогию с моментами сил, на основании теоремы о моменте равнодействующей можно написать следующие выражения:
(2.4)
где - площадь фигуры. Очевидно, что статические моменты площади относительно осей проходящих через центр тяжести (центральных осей) равны нулю.
Координаты центра тяжести:
. (2.5)
В качестве примера вычислим статический момент треугольника (рис. 2.2) относительно оси, проходящей через основание. На расстоянии от нее выделим элементарную площадку в виде полоски, параллельной оси . Площадь полоски
.
Учитывая, что
,
имеем
.
Рис. 2.2
Еще проще решить эту задачу, пользуясь формулой (2.4).
Учитывая, что
; ,