Статические моменты площади. Центр тяжести площади.

Материалы о физике / Основы сопротивления материалов / Статические моменты площади. Центр тяжести площади.

Страница 1

Рассмотрим произвольную фигуру (поперечное сечение бруса), связанную с координатными осями и (рис. 2.1). Выделим элемент площади с координатами , . По аналогии с выражением для момента силы относительно какой-либо оси можно составить выражения и для момента площади, которое называется моментом площади. Так, произведение элемента площади на расстояние от оси .

(2.1)

называется статическим моментом элемента площади относительно оси .

Рис. 2.1

Аналогично:

(2.2)

Просуммировав такие произведения по всей площади фигуры, получим соответственно статические моменты относительно осей и :

; (2.3)

Пусть , - координаты центра тяжести фигуры. Продолжая аналогию с моментами сил, на основании теоремы о моменте равнодействующей можно написать следующие выражения:

(2.4)

где - площадь фигуры. Очевидно, что статические моменты площади относительно осей проходящих через центр тяжести (центральных осей) равны нулю.

Координаты центра тяжести:

. (2.5)

В качестве примера вычислим статический момент треугольника (рис. 2.2) относительно оси, проходящей через основание. На расстоянии от нее выделим элементарную площадку в виде полоски, параллельной оси . Площадь полоски

.

Учитывая, что

,

имеем

.

Рис. 2.2

Еще проще решить эту задачу, пользуясь формулой (2.4).

Учитывая, что

; ,

Страницы: 1 2