Расчет температурных полей и полей напряжений в оправке при циклическом режиме работы

Материалы о физике / Методы оценки температурного состояния / Расчет температурных полей и полей напряжений в оправке при циклическом режиме работы

Страница 1

При моделировании циклического режима работы прошивной оправки были рассмотрены режимы, приближенные к реальным условиям эксплуатации оправки на прошивном стане. Рассматривается несвязанная квазистатическая задача. Модель поведения тела в режиме термонагружения - упругое тело. Были выбраны две оправки: первая - с диаметром цилиндрического участка 63 мм, вторая для сравнения - не более 35 мм. В качестве материала была выбрана высоколегированная сталь с наиболее близкими к стали, из которой изготавливают прошивные оправки (38ХН3МФА - как один из вариантов), температурными зависимостями свойств, таких как коэффициент температурного расширения, коэффициент теплопроводности, модуль нормальной упругости Юнга и удельная теплоемкость. Для исследования поведения материала в условиях циклического температурного нагружения важно знать физические свойства исследуемого материала. Физические свойства стали 38ХН3МФА представлены в таблице 5.1 (по данным источника [7]). Длительность цикла прошивки принимается равной 22,9 с, из которых 2,9 с затрачивается на прошивку, а остальные 20 с происходит охлаждение оправки на воздухе либо в воде в специальном устройстве. Были реализованы оба этих случая. Условия нагрева при прошивки во всех случаях приняты одинаковыми (температура заготовки , коэффициент теплопередачи ). За время взаимодействия с нагретой заготовкой оправке передается тепло, вызывающее изменение ее температурного поля. Вместе с этим меняется и поле напряжений. За время охлаждения оправка не успевает отдать все накопленное тепло и при следующем цикле нагрева значения температур на внутренних температурных слоях будут выше. Это различие в температурах наружной поверхности и внутри оправки отчетливо видно по изолиниям температур, показанным на рис.5.1. Более массивная часть оправки с большим диаметром нагревается дольше и также медленнее и отдает тепло. Циклический режим работы создает нестационарное поле температур, поэтому наблюдаемая на рисунке картина теплового поля, зафиксированная в некоторый момент времени, непрерывно меняется, и в каждый момент времени будет различной. На этом же рисунке отмечены положения контрольных точек, для которых приведены графики изменения температур и температурных напряжений. Рассмотренные режимы работы оправки и номера соответствующих рисунков приведены в таблице 5.2.

Таблица 5.1. Физические свойства стали марки 38ХН3МФА.

Температура испытания,

20

100

200

300

400

500

600

700

800

900

Модуль нормальной упругости

2,10

2,03

1,97

1,90

1,84

1,76

1,70

1,54

1,37

н. д.

Плотность

7900

Коэффициент теплопроводности

34

34

34

33

32

32

30

29

28

н. д.

Уд. электросопротивление

300

321

365

437

516

613

750

897

1080

н. д.

Температура испытания,

20 -

100

20 -

200

20 -

300

20 -

400

20 -

500

20 -

600

20 -

700

20 -

800

20 -

900

20 -

1000

Коэффициент линейного расширения

12,0

12,5

12,9

13,3

13,6

13,8

13,8

10,7

н. д.

н. д.

Удельная теплоемкость

496

508

525

538

567

601

672

697

н. д.

н. д.

Страницы: 1 2 3 4 5 6