Определение реакций опор составной конструкции (система двух тел)

Материалы о физике / Действие физических сил на конструкцию / Определение реакций опор составной конструкции (система двух тел)

Страница 2

Дано :

R2=15; r2=10; R3=20; r3=20

X=C2t2+C1t+C0

При t=0 x0=8 =4

t2=2 x2=44 см

X0=2C2t+C1

C0=8

C1=4

44=C2 *22+4*2+8

4C2=44-8-8=28

C2=7

X=7t2+4t+8

=V=14t+4

a==14

V=r22

R2 png">2=R33

3=V*R2/(r2*R3)=(14t+4)*15/10*20=1,05t+0,3

3=3=1,05

Vm=r3*3=20*(1,05t+0,3)=21t+6

atm=r3

=1,05t

atm=R3=20*1,05t=21t

anm=R323=20*(1,05t+0,3)2=20*(1,05(t+0,28)2

a=

5. Применение теоремы об изменении кинетической энергии к изучению движения механической системы

Исходные данные.

Механическая система под действием сил тяжести приходит в движение из состояния покоя. Трение скольжения тела 1 и сопротивление качению тела 3 отсутствует. Массой водила пренебречь.

Массы тел - m1, m2, m3, m4; R2, R3, R4 – радиусы окружностей.

m1, кг

m2, кг

m3, кг

m4, кг

R2, см

R3, см

s, м

m

m/10

m/20

m/10

10

12

0.05π

Найти.

Пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми, определит скорость тела 1 в тот момент, когда пройденный им путь станет равным s.

Решение.

1. Применим к механической системе теорему об изменении кинетической энергии.

,

где T0 и T – кинетическая энергия системы в начальном и конечном положениях; – сумма работ внешних сил, приложенных к системе, на перемещении из начального положения в конечное; - сумма работ внутренних сил системы на том же перемещении.

Для рассматриваемых систем, состоящих из абсолютно твёрдых тел, соединённых нерастяжимыми нитями и стержнями . Так как в начальном положении система находится в покое, то T0=0.

Следовательно, уравнение (1) принимает вид:

.

2. Определим угол, на который повернётся водило, когда груз 1 пройдёт расстояние s.

.

То есть когда груз 1 пройдёт путь s, система повернётся на угол 90º.

3. Вычислим кинетическую энергию системы в конечном положении как сумму кинетических энергий тел 1, 2, 3, 4.

T = T1 + T2 + T3 + T4.

а) Кинетическая энергия груза 1, движущегося поступательно равна:

.

б) Кинетическая энергия катка 2, вращающегося вокруг своей оси равна:

,

где - момент инерции катка 2, - угловая скорость катка 2.

Отсюда получаем, что

.

в) Кинетическая энергия катка 3, совершающего плоско-параллельное движение, равна:

,

где - скорость центра масс катка 3,

-угловая скорость мгновенного центра скоростей катка 3

момент инерции катка 3 относительно мгновенного центра скоростей.

Отсюда получаем, что

г) Кинетическая энергия катка 4, совершающего плоскопараллельное движение, равна:

Страницы: 1 2 3