Определение реакций опор составной конструкции (система двух тел)
Дано :
R2=15; r2=10; R3=20; r3=20
X=C2t2+C1t+C0
При t=0 x0=8 =4
t2=2 x2=44 см
X0=2C2t+C1
C0=8
C1=4
44=C2 *22+4*2+8
4C2=44-8-8=28
C2=7
X=7t2+4t+8
=V=14t+4
a==14
V=r22
R2 png">2=R33
3=V*R2/(r2*R3)=(14t+4)*15/10*20=1,05t+0,3
3=3=1,05
Vm=r3*3=20*(1,05t+0,3)=21t+6
atm=r3
=1,05t
atm=R3=20*1,05t=21t
anm=R323=20*(1,05t+0,3)2=20*(1,05(t+0,28)2
a=
5. Применение теоремы об изменении кинетической энергии к изучению движения механической системы
Исходные данные.
Механическая система под действием сил тяжести приходит в движение из состояния покоя. Трение скольжения тела 1 и сопротивление качению тела 3 отсутствует. Массой водила пренебречь.
Массы тел - m1, m2, m3, m4; R2, R3, R4 – радиусы окружностей.
m1, кг |
m2, кг |
m3, кг |
m4, кг |
R2, см |
R3, см |
s, м |
m |
m/10 |
m/20 |
m/10 |
10 |
12 |
0.05π |
Найти.
Пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми, определит скорость тела 1 в тот момент, когда пройденный им путь станет равным s.
Решение.
1. Применим к механической системе теорему об изменении кинетической энергии.
,
где T0 и T – кинетическая энергия системы в начальном и конечном положениях; – сумма работ внешних сил, приложенных к системе, на перемещении из начального положения в конечное; - сумма работ внутренних сил системы на том же перемещении.
Для рассматриваемых систем, состоящих из абсолютно твёрдых тел, соединённых нерастяжимыми нитями и стержнями . Так как в начальном положении система находится в покое, то T0=0.
Следовательно, уравнение (1) принимает вид:
.
2. Определим угол, на который повернётся водило, когда груз 1 пройдёт расстояние s.
.
То есть когда груз 1 пройдёт путь s, система повернётся на угол 90º.
3. Вычислим кинетическую энергию системы в конечном положении как сумму кинетических энергий тел 1, 2, 3, 4.
T = T1 + T2 + T3 + T4.
а) Кинетическая энергия груза 1, движущегося поступательно равна:
.
б) Кинетическая энергия катка 2, вращающегося вокруг своей оси равна:
,
где - момент инерции катка 2, - угловая скорость катка 2.
Отсюда получаем, что
.
в) Кинетическая энергия катка 3, совершающего плоско-параллельное движение, равна:
,
где - скорость центра масс катка 3,
-угловая скорость мгновенного центра скоростей катка 3
момент инерции катка 3 относительно мгновенного центра скоростей.
Отсюда получаем, что
г) Кинетическая энергия катка 4, совершающего плоскопараллельное движение, равна: