Определение реакции опор твёрдого тела

Материалы о физике / Определение реакции опор твёрдого тела

Страница 5

Применим теорему об изменении количества движения механической системы в дифференциальной форме. В проекциях на оси координат

, (1)

где - проекции вектора количества движения системы на оси координат; - суммы проекций внешних сил на соответствующие оси.

Количество движения системы тел 1, 2 и 3

(2)

где

. (3)

Здесь - скорости центров масс тел 1, 2, 3; - соответственно переносные и относительные скорости центров масс.

Очевидно, что

(4)

Проецируя обе части векторного равенства (2) на координатные оси, получаем с учетом (3) и (4)

(5)

где - проекция вектора на ось ;

Проекция главного вектора внешних сил на координатные оси

(6)

Знак « - » соответствует случаю, когда , а знак «+» - случаю, когда .

Подставляя (5) и (6) в (1), получим

(7)

Выразим из второго уравнения системы (7) величину нормальной реакции и подставим ее в первое уравнение. В результате получим

при ; (8)

при . (9)

где

Рассмотрим промежуток времени , в течении которого тело 1 движется вправо . Из (8) следует, что

,

где С- постоянная интегрирования, определяемая из начального условия: при

.

При скорость тела 1 обращается в ноль, поэтому .

Найдем значения и :

Т.е. , . Значит, тело при начинает двигаться в обратном направлении. Это движение описывается дифференциальным уравнением (9) при начальном условии: ; (10)

Интегрируя (9) с учетом (10), получим, при

(11)

При получим из (11) искомое значение скорости тела 1 в момент, когда

.

Точное решение задачи.

Воспользовавшись методикой, изложенной выше, получим дифференциальное уравнение движения тела 1:

Страницы: 1 2 3 4 5 6