Обзор методов теплового расчета и существующих моделей

Материалы о физике / Моделирование нагрева асинхронного двигателя / Обзор методов теплового расчета и существующих моделей

Страница 3

Ii – текущее значение тока статора;

Iн – номинальный значение тока статора;

Tmax – максимальная постоянная нагрева (постоянная нагрева стали магнитопровода);

Tmin – минимальная постоянная нагрева (постоянная нагрева обмотки);

Kн – коэффициент нагрева, учитывающий составляющую превышения температуры стали в превышении температуры обмотки.

По такому же принципу в [9] рассчитывается охлаждение двигателя после отключения его от сети. Зависимость температуры от времени при охлаждении двигателя описывается следующим выражением:

, (1.23)

где To max – максимальная постоянная охлаждения;

To min – минимальная постоянная охлаждения;

Kо – коэффициент охлаждения.

Значение θуст определяется решением (1.19) для установившегося режима, то есть при dθ/dt=0.

По сути дела, в модели [9] двигатель так же представлен двумя телами нагрева: обмоткой статора с минимальной постоянной нагрева Tmin и сталью машины с максимальной постоянной нагрева Tmax. Недостатком данной модели является отсутствие задания начальных условий.

Самой простой тепловой моделью электродвигателя является представление его одним телом нагрева [7,8,10,11]. При этом вводятся следующие допущения:

1. Электродвигатель имеет бесконечно большую теплопроводность и, как следствие, одинаковую температуру по всему объему;

2. Количество теплоты, которым электродвигатель обменивается с окружающей средой, пропорционально разности температур двигателя и окружающей среды;

3. Тепловые параметры электродвигателя и окружающей среды постоянны и не связаны с температурой двигателя (это обстоятельство обеспечивает линейность тепловой модели).

В этом случае уравнение, описывающее нагрев двигателя:

. (1.24)

Решение этого уравнения при постоянстве потерь двигателя ΔP=const и, следовательно, постоянном установившемся превышении температуры:

, (1.25)

где Δθ(t) – текущее превышение температуры двигателя над температурой окружающей среды;

Δθуст – установившееся превышение температуры двигателя;

Δθ0 – начальное превышение температуры двигателя;

Тθ=С/А – постоянная времени нагрева.

В силу того, что асинхронный двигатель представляет собой сложную термодинамическую систему, неоднородную по своим тепловым параметрам, последняя модель является довольно грубым приближением.

Страницы: 1 2 3