Формирование изображения в оптическом микроскопе

Страница 3

Другой, еще более простой метод был разработан Томпсоном и др. [1.7] для исследования микроструктуры капель тумана, однако его можно использовать и в случае биологических объектов. Луч от импульсного лазера падает на частицы вблизи фотографической пластинки. Дифрагированный свет от частиц интерферирует с недифрагированным светом, образуя голограмму. В этом случае, так же как и при оригинальной габоровской голограмме [1.2], на стадии восстановления наблюдались три перекрывающихся волновых фронта, соответствующих непродифрагированному восстанавливающему лучу, мнимому изображению объекта и действительному изображению объекта. Часто одно из этих изображений совпадало с расфокусированным изображением другого (с сопряженным изображением).

Томпсон и др. показали, что при коллимированиом опорном и восстанавливающем пучках и голограмме, находящейся в дальней области, одно изображение можно удалить на бесконечность, т.е. наблюдать так далеко от фокуса, что оно будет пренебрежимой помехой при наблюдении другого изображения. За одну экспозицию лазерным импульсом записывают формы и положения всех частиц вблизи записывающей среды. По чисто техническим причинам (см. приложение) мы не можем наблюдать все частицы одновременно. Однако мы можем исследовать их по сечениям. При воспроизведении наблюдаются изображения частиц как в фокусе, так и вне его. Передвигая экран для наблюдения или видикоп на различные расстояния от голограммы, мы можем наблюдать, как изображения входят и выходят из фокуса. Изображение находится в фокусе, когда его размеры и окружности вокруг него минимальны.

Рис. 1.2.

Фотографии изображений, восстановленных с одного кадра микрокиноголограммы. Показана различная глубина фокуса, что можно видеть по появлению и исчезновению капилляров из фокуса. Можно видеть пузырьки, проходящие по центральной артерии (С разрешения М. Е. Кокса, Университет Мичиган-Флинт).

Рисунок 1.3. Обычная схема записи голограмм

Рис. 1.4 Предпочтительная схема записи голограмм

Было реализовано несколько интересных биомедицинских применений. Один из наиболее наглядных примеров следует из работы Ботнера и Томпсона [1.8] по волокнистым материалам, которые из-за своих размеров не фильтруются нашими дыхательными органами и вследствие этого являются потенциально токсичными. На рис. 1.5,а показана голограмма. Буквы Л, В, С указывают местоположения в плоскости х—у трех частиц, находящихся на различных глубинах. На вставках б, в и г показаны сами частицы в плоскостях наилучшей фокусировки. Таким образом, рис. 1.5 демонстрирует, как осуществляется голографический анализ микрочастиц. Каждая дифракционная картина на голограмме есть указатель частицы, находящейся на одной оси с опорным пучком в момент излучения импульса лазера. Освещая эту картину (голограмму отдельной частицы) копией опорного пучка, только противоположно направленной, мы формируем точное действительное изображение частицы (подверженное дифракционным ограничениям, накладываемым размером голограммы, размером частицы и расстоянием частицы от пластинки). Если бы объектом была математическая точка на расстоянии d от записывающей среды, ее голограмма была бы похожа на френелевскую зонную пластинку с фокусным расстоянием d.

Страницы: 1 2 3 4

аренда виброплиты в санкт-петербурге здесь