Анализ механизма создания инверсных населенностей в трехуровневых схемах. Определение зависимости населенностей уровней от плотности (интенсивности) возбуждающего излучения накачки

Материалы о физике / Уникальные свойства лазерного излучения / Анализ механизма создания инверсных населенностей в трехуровневых схемах. Определение зависимости населенностей уровней от плотности (интенсивности) возбуждающего излучения накачки

Страница 1

Основной физический процесс, определяющий действие лазера, - это вынужденное испускание излучения. Оно происходит при взаимодействии фотона с возбужденным атомом при точном совпадении энергии фотона с энергией возбуждения атома (или молекулы)

В результате этого взаимодействия атом переходит в невозбужденное состояние, а избыток энергии излучается в виде нового фотона с точно такой же энергией, направлением распространения и поляризацией, как и у первичного фотона. Таким образом, следствием данного процесса является наличие уже двух абсолютно идентичных фотонов. При дальнейшем взаимодействии этих фотонов с возбужденными атомами, аналогичными первому атому, может возникнуть “цепная реакция” размножения одинаковых фотонов, “летящих” абсолютно точно в одном направлении, что приведет к появлению узконаправленного светового луча. Для возникновения лавины идентичных фотонов необходима среда, в которой возбужденных атомов было бы больше, чем невозбужденных, поскольку при взаимодействии фотонов с невозбужденными атомами происходило бы поглощение фотонов. Такая среда называется средой с инверсной населенностью уровней энергии.

Элементарные процессы, приводящие к образованию инверсии на рабочих уровнях, определяются переходами между рядом энергетических состояний. В большинстве случаев нет необходимости рассматривать возможные переходы между всеми уровнями (число их, как известно, может быть бесконечным). Разумно учесть только те переходы, которые вносят наиболее существенный вклад в изменение населенности рабочих уровней под воздействием внешнего возбуждения (накачки). Более того, при анализе условий возникновения инверсии группу уровней можно рассматривать как один эквивалентный уровень (или полосу) с каким-либо определенным эффективным временем жизни. В результате таких упрощений можно говорить о двух-, трех- и четырехуровневой схеме возбуждения активного вещества в зависимости от количества принципиально необходимых энергетических уровней (или групп уровней), участвующих в создании инверсии населенностей. Ей соответствует двух-, трех- и четырехуровневая схема работы квантовых усилителей и генераторов. Очевидно, нижний уровень должен быть основным, а остальные уровни — возбужденными.

Рассмотрим особенности трехуровневых схем. Предложение использовать для создания инверсии населенностей более сложные трех- и четырехуровневые схемы накачки вызвало прогресс в квантовой электронике.

Механизм создания инверсии населенностей в трехуровневых схемах поясняет рис. 1.

а) б)

Рис. 1.1 Трехуровневые схемы работы квантовых усилителей и генераторов первого (а) и второго (б) типов

В зависимости от того, между какими уровнями достигается инверсия, различают трехуровневые схемы первого и второго типов. В схемах первого типа рабочий переход заканчивается в основном состоянии (рис. 1, а), а в схемах второго типа — в возбужденном (рис. 1, б). Накачка осуществляется по возможности селективно на уровень Е3. По трехуровневой схеме первого типа работает рубиновый лазер, а по схеме второго типа - гелий-неоновый газовый лазер.

В трехуровневых схемах канал накачки и канал усиления частично разделены Это позволяет использовать для достижения инверсии наиболее универсальный метод оптической накачки, а также накачку с помощью газового разряда. Возможность получения инверсии населенностей с помощью оптической накачки в трехуровневой схеме довольно очевидна. Например, если в схеме второго типа осуществить селективный переход E1→ Е3, то уровень Е3 окажется инверсно заселенным относительно уровня Е2 (при kT<<E2 −E1). Из рисунка можно заключить, что накопление частиц на верхнем лазерном уровне (Е2 в схеме первого типа и Е3 − в схеме второго типа) будет в том случае, если релаксационные процессы Е3→Е2 в схеме а) и E2→ E1 в схеме б) идут достаточно быстро, а верхний рабочий уровень является метастабильным.

Страницы: 1 2 3