Жизнь и достижения Нильса Бора

Материалы о физике / Жизнь и достижения Нильса Бора

Страница 6

Бор также сформулировал два из фундаментальных принципов, определивших развитие квантовой механики: принцип соответствия и принцип дополнительности

Принцип соответствия, который Бор выдвинул еще в 1916 году, означал, что квантовая теория может быть определенным образом согласована с классической теорией, то есть «соответствовать» ей. Классическая механика блестяще подтвердилась не только во всех макрофизических процессах, но также и во всех микрофизических процессах, вплоть до движения атомов как целого, что показала кинетическая теория материи. Итак, новая атомная механика должна была привести в конце концов к тем же результатам, что и классическая. Она должна была асимптотически перейти в классическую механику для крайних случаев больших масс или больших размеров орбит. Если значение элементарного кванта действия h рассматривать как бесконечно малую величину или пренебречь им, то практически будут действовать законы классической физики.

Если, например, электрон в атоме водорода переходит на орбиты, все дальше отстоящие от ядра, и наконец полностью отрывается от него, то законы излучения квантовой механики с большим приближением принимают форму законов классической электродинамики. Принцип соответствия передает, таким образом, связь между двумя противоречащими друг другу теоретическими построениями: микрофизикой и макрофизикой, границы между которыми определяются константой Планка.

Принцип соответствия, в котором старое было смело соединено с новым, оказался очень полезным для приблизительных расчетов интенсивности спектральных линий. Он сыграл большую роль в дальнейшем развитии квантовой физики. «Теоретическая физика жила этой идеей последующие десять лет, – говорил Макс Борн. – .Искусство угадывания правильных формул, которые отклоняются от классических, но переходят в них, в смысле принципа соответствия было значительно усовершенствовано».

Примерно десятилетие спустя, на съезде физиков, который был устроен летом 1927 года в Комо по случаю столетия со дня смерти великого итальянского физика Алессандро Вольта, Бор изложил свой второй принцип, принцип дополнительности, сделавший возможным непротиворечивое толкование явлений квантовой механики. Основные выводы появились под названием «Квантовый постулат и новое развитие атомистики» в журнале «Натурвиссеншафтен», а в первоначальном варианте на английском языке в журнале «Нейче».

Эта статья Бора, в которой впервые излагалось так называемое копенгагенское толкование квантовой механики, принадлежит к тем классическим документам физической науки, которые непосредственно послужили теоретической подготовке атомного века. Прошло более двух десятилетий, прежде чем выдвинутая Планком идея о квантах была настолько развита, что сделала возможным действительное понимание внутриатомных закономерностей.

С понятием корпускулы было связано представление о каком-то предмете, имеющем строго определенную величину движения и в данный момент находящемся в строго определенном месте, как это наблюдается в макромире, например у брошенного мяча, положение которого и скорость движения в любой момент могут быть точно измерены и определены.

Однако выяснилось, что невозможно не только практически, но и в принципе с одинаковой точностью одновременно установить место и величину движения атомной частицы. Только одно из этих двух свойств может быть определено точно. Чем точнее и определеннее измеряют одну из двух величин, тем менее точной и определенной оказывается другая. Существование элементарного кванта действия служит препятствием для установления одновременно и с одинаковой точностью величин, которые «канонически связаны», то есть положения и величины движения микрочастицы.

Это естественное состояние «обоюдной неопределенности», как говорил Бор, которое сопутствует каждому квантовомеханическому измерению, было математически отображено Гейзенбергом как «соотношение неточностей» или «соотношение неопределенностей». Это открытие принадлежат к величайшим достижениям теоретической физики.

В своей книге «Физика атомного ядра» Гейзенберг так охарактеризовал открытый им закон природы: «Никогда нельзя одновременно точно знать оба параметра, решающим образом определяющие движение такой мельчайшей частицы: ее место и ее скорость. Никогда нельзя одновременно знать, где она находится, как быстро и в каком направлении движется. Если ставят эксперимент, который точно показывает, где она находится в данный момент, то движение нарушается в такой степени, что частицу после этого даже нельзя снова найти. И наоборот, при точном измерении скорости картина места полностью смазывается».

Страницы: 1 2 3 4 5 6 7 8 9 10 11