Самоорганизация в лазере

Материалы о физике / Лазерный свет / Самоорганизация в лазере

Рассмотрим подробнее процессы, протекающие в лазере — это поможет нам раскрыть тайну самоорганизации. Лазер отличается от обычной газоразрядной трубки только наличием зеркал (рис. 7). Зеркала нужны для того, чтобы свет, движущийся вдоль оси трубки, как можно дольше оставался внутри трубки (рис. 8). При этом одно из установленных зеркал частично проницаемо, благодаря чему некоторое количество света излучается наружу. Почему же желательно по возможности дольше удерживать свет внутри лазерной установки?

Рис. 8. Световые волны, оказавшись между зеркалами, могут вести себя по-разному: те, что движутся в направлении, точно совпадающем с осью трубки, отражаются от зеркал и остаются в лазере более продолжительное время, а все остальные быстро покидают пределы трубки

При таких условиях начинается процесс, еще в начале двадцатого века предсказанный Эйнштейном. Уже возникшие световые волны могут принудить возбужденные световые электроны к синхронным колебаниям. С электронами происходит то же самое, что и с увлекшимся чечеточником, который усиливает ритм, задаваемый музыкантами, и под конец, обессилев и целиком выложившись, буквально валится с ног. Электрон усиливает световую волну, т.е. поднимает ее гребень, до тех пор, пока не отдаст волне всю свою энергию и не вернется в начальное состояние — состояние покоя.

Рис. 9. «Волна волне рознь»: примеры волн с различными фазами, т. е. с разными расстояниями между гребнями

Поскольку благодаря зеркалам световые волны относительно долго остаются внутри лазера, они могут подчинять себе все больше и больше световых электронов, используя их для того, чтобы увеличить собственную амплитуду, т. е. высоту гребня волны. Но и волны с одинаковой амплитудой все же могут отличаться друг от друга: одинаковые по высоте гребни волн могут следовать на разном расстоянии друг от друга (рис. 9). Таким образом, у «истоков» каждого лазерного излучения стоят одновременно совершенно разные волны, успевшие на данный момент сформироваться благодаря усилиям нескольких особо «прытких» электронов. Волны вступают в конкурентную борьбу за усиление своего влияния на возбужденные электроны. Сами электроны тоже по-разному относятся к различным волнам, зачастую при передаче энергии отдавая какой-то определенной волне некоторое предпочтение; предпочтением этим пользуются те волны, частота которых оказывается ближе всего к «внутреннему ритму» самого электрона. И хотя такие особые волны часто имеют лишь очень небольшое преимущество, степень их влияния лавинообразно растет, и в конце концов они одерживают верх над остальными. В результате такого тотального подавления вся энергия световых электронов оказывается собрана в единую абсолютно равномерно колеблющуюся волну. И наоборот: стоит только какой-то волне добиться успеха, как она подчиняет себе каждый вновь возбуждаемый электрон, навязывая ему свою собственную частоту колебаний. Возникающая таким образом новая волна определяет своим поведением порядок в лазере — она играет роль параметра порядка; термин этот уже не раз нами упоминался.

Поскольку параметр порядка вынуждает отдельные электроны двигаться совершенно синхронно и тем самым определяет их действия, мы снова можем сказать, что параметр порядка «порабощает», подчиняет себе отдельные элементы системы. Верно и обратное: параметр порядка (т. е. световая волна) есть результат синхронных колебаний отдельных электронов. Возникновение параметра порядка, с одной стороны, и когерентного поведения электронов — с другой, взаимно обуславливают друг друга; в таких случаях принято говорить о циклической причинности. Перед нами еще один типичный пример синергетического поведения. Для обеспечения синхронности колебаний электронов должен существовать параметр порядка (в данном случае эту роль выполняет световая волна). Однако существование самой световой волны возможно только благодаря синхронным колебаниям электронов. Словом, все выглядит так, что мы должны бы задействовать некую высшую силу, единожды создавшую некое изначальное состояние упорядоченности, которое затем сможет самостоятельно поддерживать свое существование. Однако в действительности все происходит иначе. В самом начале имеет место конкурентная борьба и процесс отбора, в результате которого все электроны становятся «рабами» какой-то определенной волны. При этом интересно отметить, что все волны, совершенно случайно — спонтанно — порожденные электронами, должны быть рассортированы в соответствии с законами конкурентной борьбы, т. е. пройти через некий отбор. Перед нами типичный для синергетики пример взаимоотношений между случайностью и необходимостью: «случайность» здесь воплощена в спонтанном излучении, а «необходимость» — в неумолимом законе конкуренции и отбора.