Проблема полноты квантовой механики. Парадокс Эйнштейна-Подольского-Розена и его интерпретации.

Материалы о физике / Основные идеи квантовой теории и ее эволюция / Проблема полноты квантовой механики. Парадокс Эйнштейна-Подольского-Розена и его интерпретации.

Страница 3

Итак, необходимо признать, что классические представления об абсолютно точных физических величинах не имеют внешнего оправдания. Такие представления ведут к идеализированной схеме, которая выглядит естественной и логически простой, однако не соответствует физической действительности, и поэтому от нее необходимо отказаться. Абсолютно точных физических величин нет, как бы того ни хотелось некоторым авторам. “Как получается, что этот ложный идеал так прочно укоренился в головах даже превосходных исследователей? — недоумевал Борн.— Это не физическая проблема, а психологическая, которая, вероятно, может быть понята из развития физической картины мира со времен Ньютона. Именно успехи ньютоновской физики, которая смогла использовать для своих задач математический континуум (D x = 0, D t = 0), закрепили ошибочное убеждение, будто бы существуют абсолютно точные значения физических величин. Законы Ньютона описывают движение материальной точки, но материальная точка — это модель действительности, а вовсе не сама действительность. Отождествлять модель и реальность — также “результативно”, как отождествлять каменную статую с живым человеком. Однако тот факт, что классическая физика может с успехом описывать взаимодействие между двумя массами как эквивалентное взаимодействию между двумя материальными точками, позволил физикам поверить, что точки в самом деле существуют реально и даже что все физические величины реально имеют абсолютно точные значения.

Между тем квантовая физика разрушает эту иллюзию. А потому классический детерминизм не может более быть идеалом для физической теории. Как писал Борн, “детерминизм классической физики оказывается призраком, вызванным тем, что математико-логическим структурам понятий придается слишком большое значение. Это идол, а не идеал в исследовании природы, и, следовательно, его нельзя использовать как возражение против существенно индетерминистской статистической интерпретации квантовой механики”.

К мысли, что время и пространство объективно не существуют как абсолютно точные величины, а являются лишь относительно точно определенными, т.е. существуют с некоторой объективной неопределенностью, можно прийти и другим путем — путем последовательного применения идеи относительности. Эйнштейн, следуя своему основному критерию — критерию внешнего оправдания, согласно которому из теории необходимо исключить понятия, не имеющие опытного подтверждения, отказался от представления об однородности времени и пространства. В теории относительности классические представления о времени и пространстве не просто отрицаются, а опровергаются, заменяются новыми, более высокого уровня — таким образом, чтобы прежние классические представления об абсолютном времени и пространстве оставались справедливыми для предельного случая малых скоростей. Но на этом Эйнштейн остановился и не захотел идти дальше по пути развития идеи относительности. Он не мог допустить, что сама определенность относительных интервалов времени и пространства должна считаться также относительной. Хотя ученый и считал, что время и пространство относительны, он продолжал в духе классической физики думать, что их величины определены абсолютным образом. Если же последовательно проводить идею относительности, то необходимо будет признать, что относительные сущности не могут быть абсолютно точно определены, а только относительно точно. Поэтому боровскую концепцию дополнительности следует рассматривать как более развитую. Принимая соотношение неопределенностей как факт, она автоматически включает в себя это необходимое продолжение идеи относительности времени и пространства.

Страницы: 1 2 3 4