Поглощение звука

Страница 1

Влияние вязкости и теплопроводности среды. Ослабление силы звука при увеличении расстояния от источника происходит, однако, не только благодаря распределению энергии в большем объеме из-за «геометрических» причин. Звуковые полны постепенно теряют свою энергию благодаря их поглощению. Если звуковая волна движется в неограниченной среде, то поглощение обусловлено прежде всего вязкостью воздуха, или, иначе, действием внутреннего трения, испытываемого частицами воздуха при их движении, вызываемом прохождением волны; при этом часть энергии звука превращается в тепло.

Опытом установлено, что поглощение в большой степени зависит от частоты звука. Можно также теоретически показать, что потери энергии звуковой волны обратно пропорциональны квадрату длины волны и, следовательно, прямо пропорциональны квадрату частоты звука. Звук частоты 10 000 гц испытывает поглощение, в 100 раз большее, чем звук частоты 1000 гц, и в 10 000 раз большее, чем звук частоты 100 гц. Этим, например, объясняется тот факт, что, стоя рядом со стреляющим орудием, мы слышим резкий звук, тогда как вдали от орудия звук выстрела кажется более мягким. Забегая несколько вперед, укажем, что звук выстрела, как и всякий короткий звуковой импульс представляет собой целый набор звуковых частот, начиная от низких инфразвуковых и кончая частотами в несколько тысяч герц. Именно высокие частоты, присутствующие в звуке выстрела, делают его резким. Но звуки высоких частот значительно сильнее поглощаются в воздухе, чем звуки низких частот, и если мы находимся вдалеке от орудия, практически до нас не доходят.

Поглощение звука зависит не только от вязкости воздуха, но и от его теплопроводности. Напомним прежде всего, что такое теплопроводность.

Если различные части тела, например металлического стержня, имеют разную температуру, то тепло переходит от более горячих частей тела к более холодным. Такой перенос тепла называется теплопроводностью.

Для того чтобы объяснить, как может влиять теплопроводность на поглощение звука, рассмотрим вертикальный цилиндр с находящимся в нем газом. В цилиндре ходит без трения хорошо пригнанный поршень. Положим на поршень небольшой груз; при этом произойдет сжатие газа. Это сжатие будет происходить с какой-то конечной скоростью. Благодаря тому что давление в газе распространяется не мгновенно, давление непосредственно под поршнем будет выше, чем в остальном, газе. Так как при сжатии газ нагревается, температура газа непосредственно под поршнем будет выше, чем в остальном газе. Возникает разность температур газа в цилиндре и в окружающей среде, и часть тепла через теплопроводящие стенки цилиндра отводится в окружающую среду. Кроме того, при быстром сжатии газа часть работы затрачивается на преодоление внутреннего трения (вязкости) в газе. При бесконечно медленном сжатии указанные процессы не происходят и работа совершается без потерь. Поэтому сжатие газа с конечной скоростью требует большей работы, чем бесконечно медленное сжатие. Теперь снимем с поршня груз; произойдет расширение газа с конечной скоростью. Давление газа на поршень и температура его непосредственно под поршнем будут ниже, чем в остальном газе, и меньше, чем при бесконечно медленном расширении. Поэтому по сравнению с бесконечно медленным расширением газ совершит меньшее количество работы.

Отсюда следует, что сжатие и расширение газа, происходящие с конечной скоростью, представляют собой необратимые процессы, сопровождающиеся потерей энергии, так как работа, которую следует приложить к системе (поршню и находящемуся под ним газу) для сжатия до какого-то определенного объема, будет больше, чем работа, полученная от системы при расширении до этого же объема. Благодаря теплообмену между стенками цилиндра и окружающей средой при сжатии газа с конечной скоростью в окружающую среду выходит большее количество тепла, чем приходит тепла в систему при ее расширении.

Страницы: 1 2