Определение реакций в опорах методом кинетостатики

Выберем для нашей системы неподвижную систему координат О1X1Y1, (cм. рис.4).

Рис.4. Силы, действующие на систему

Уравнения кинетостатики в векторной форме имеют вид

(2.2.1)

где - главные векторы активных сил, реакций связей и сил инерции;

- главные моменты активных сил, реакций связей и сил инерции относительно точки О1.

Сила инерции шарика как материальной точки, совершающей сложное движение, равна геометрической сумме относительной, переносной и кориолисовой сил инерции:

,

Сила инерции пластины будет равна:

Модули сил инерции равны

, , (2.2.2)

Изобразим активные силы, реакции опоры и силы инерции, действующие на механическую систему (рис. 4). Векторные уравнения кинетостатики (2.2.1) в проекциях на оси неподвижной системы координат OX1Y1 имеют вид

(2.2.3)

C учётом выражений для сил инерции (2.2.2), уравнения (2.2.3) принимают вид

Найденные уравнения реакций шарнира и вращательного момента совпадают с теми, что были найдены в предыдущих частях курсовой работы.

Билайт для похудения таблетки