Магнитная анизотропия

Страница 1

В ферромагнитном кристалле имеются взаимодействия, которые ориентируют вектор намагниченности вдоль определенных кристаллографических направлений, называемых осями легкого намагничивания.

Энергия, связанная с этими взаимодействиями, называется энергией магнитной кристаллографической анизотропии или просто энергией магнитной анизотропии.

Одна из причин магнитной анизотропии иллюстрируется схемой на рисунке 19. Намагниченность кристалла «чувствует» кристаллическую решетку благодаря перекрытию электронных орбит: спиновые моменты взаимодействуют с орбитальными из-за наличия спин-орбитальной связи, а орбитальные моменты в свою очередь взаимодействуют с кристаллической решеткой за счет существующих в ней электростатических полей и перекрытия волновых функций соседних атомов решетки [8, с. 581-582].

Рисунок 19.

Все известные в настоящее время ферромагнетики – тела кристаллические. Кристаллики очень малы. Но если хорошо отполированную поверхность протравить кислотой и исследовать под микроскопом, то мы увидим различные по форме и величине зерна. Тщательное изучение показывает, что эти отдельные зерна представляют собой кристаллы с неправильными поверхностными границами.

Неправильность границ объясняется тем, что при кристаллизации вещества одновременно начинает расти большое количество кристаллов и они мешают друг другу принять правильные граничные очертания.

Кристаллы, граничная поверхность которых не представляет собой правильной, характерной для кристаллов формы, называются кристаллитами. В кристаллических телах атомы расположены в строго определенном порядке и составляют так называемую кристаллическую решетку. Кристаллические решетки могут быть разнообразными (примеры на рисунке 20).

Рисунок 20 - Элементарные ячейки кристаллических решёток: а) гексагональная; б) объёмноцентрированная; в) гранецентрированная.

Асимметрия перекрытия электронных оболочек соседних ионов как одна причин кристаллографической магнитной анизотропии. Вследствие спин-орбитального взаимодействия распределение электронного заряда – не сферическое. Асимметрия связана с направлением спина, поскольку изменение направления спина по отношению к осям кристалла изменяет обменную энергию, а также электростатическую энергию взаимодействия распределений заряда пар атомов. Именно эти эффекты приводят к появлению энергии анизотропии. Энергия системы а иная, чем энергия системы б.

Для кристаллов характерна анизотропность физических свойств. Это значит, что в кристаллах по различным направлениям свойства различны. В телах же не кристаллических (аморфных) все физические свойства по различным направлениям совершенно одинаковы.

Поскольку все ферромагнетики – тела кристаллические, а последним свойственна анизотропия различных физических свойств, то возникает вопрос: являются ли магнитные свойства ферромагнетиков изотропными или анизотропными, т.е. существует ли анизотропия магнитный свойств и если существует, то каких именно?

1) Естественно прежде всего выяснить, как зависит величина спонтанной намагниченности от ее направления в кристалле. Нам уже известно, что величина спонтанной намагниченности равна намагниченности насыщения. Значит, измеряя в кристалле намагниченность насыщения по разным направлениям, мы будем получать значения спонтанной намагниченности по этим направлениям.

Страницы: 1 2 3 4 5