Конструкция экспериментальной установки
Для проведения экспериментальных исследований мною была создана экспериментальная установка, состоящая из экспериментальной ячейки с исследуемым образцом и лазерной технологической установки ЛТУ-200 которая ранее для этих целей не использовалось.
Созданная экспериментальная установка включала в себя:
1) Экспериментальную ячейку (ЭЯ);
2) Источник питания ЭЯ;
3) ЛТУ-200;
4)Измерительные приборы, фиксирующие наличие пробоя (вольтметр, амперметр, осциллограф).
Схема установки и методика проведения эксперимента показана на рис.14. и заключается в следующем:
Рисунок.14. Схема установки, где L&I - источник излучения и экспериментальная ячейка с исследуемым образцом (жидкости), где Т - латэр (источник переменного напряжения), D – диодный мост, С – конденсатор, А – амперметр, V – вольтметр, L&I - экспериментальная ячейка с исследуемым образцом и лазерная технологическая установка ЛТУ-200.
Экспериментальная ячейка (ЭЯ)
Рисунок.15. внешний вид экспериментальной ячейки (ЭЯ).
Конструкция ЭЯ показана на рис.15 и состоит из следующих элементов:
Основание - столик микроскопа БМИ-1Ц позволяющего перемещать ячейку по осям ХУ с точностью 10-5 м.
Ячейки с исследуемой жидкостью.
Электродов, зазор между которыми можно менять с шагом 10-5 м.
Источник питания ЭЯ.
Целью разработки системы электропитания ЭЯ было обеспечение заданных требований по напряжению и силе тока (т.е. величин влияющих на характер эрозионных процессов).
Рисунок.16. внешний вид источника питания ЭЯ.
Источник питания ЭЯ позволял изменять падение напряжения на электродах от 0 В. до 200 В., состоял из следующих элементов:
Латэр мощностью 400 Вт;
Выпрямителя напряжения собранного на диодном мосту (диоды-Д226Б).
ЛТУ-200.
1) CO2-лазер непрерывного излучения ЛГП-200;
2) программируемый координатный стол на базе станка сверлильно-фрезерного КСС-2Ф3 с устройством числового программного управления (ЧПУ) Луч- 43;
3) система электропитания лазера, на базе сварочного выпрямителя ВСЖ-03;
4) система охлаждения лазера;
5) задающий генератор Г5-54;
Рисунок.17. Внешний вид технологической установки ЛТУ-200.
6) система подачи вспомогательного газа;
7) газолазерный резак;
8) блок управления технологической установкой.
В качестве источника излучения использовался электроразрядный СО2 - лазер, в котором используются нижние колебательные уровни возбуждённых молекул СО2 для генерации инфракрасного излучения с длиной волны 10,6 мкм.
Для повышения эффективности генерации излучения молекул углекислого газа в большинстве СО2 - лазеров используется газовая смесь с различным процентным содержанием диоксида углерода СО2, азота N2 и гелия Не. Добавка азота в рабочую газовую смесь способствует усилению генерации лазерного излучения, а гелий в основном интенсифицирует отвод теплоты во время генерации вследствие высокой теплоёмкости и теплопроводности, понижая тем самым общую температуру смеси.
В СО2 - лазерах наиболее распространена схема с самостоятельным электрическим разрядом, совмещающим функции накачки рабочей смеси и ионизации. Такие типы лазеров конструктивно оформляются наиболее просто, и в большинстве известных отечественных и зарубежных лазеров мощностью излучения до 1000 Вт используется схема электроразрядного лазера с самостоятельным разрядом [11, 12,13].
В современных конструкциях СО2 - лазеров для увеличения эффективности использования рабочей смеси необходимо поддерживать её температуру на оптимальном уровне и не допускать перегрева. С этой целью осуществляется охлаждение либо по принципу отвода теплоты от разрядной трубки (СО2 - лазеры с диффузионным охлаждением рабочей смеси)[11], либо непосредственной циркуляцией рабочей смеси с целью замены нагретых объёмов (лазеры с конвективным охлаждением) [12].
Рисунок.18. Схема размещения излучателя лазера и ВЧ БП на ЛТУ-200;
1-излучатель, 2- ВЧ БП, 3- манометр, 4- газолазерный резак