Гистерезисные явления в ферромагнетиках

Страница 1

Представим себе, что мы взяли ненамагниченный кусок железа и поместили его в плавно возрастающее магнитное поле. Тогда, очевидно, железо начнет плавно намагничиваться, намагниченность его будет расти, пока при достаточно сильном поле Н, не достигнет своего насыщения.

Процесс намагничивания образца, ранее не помещавшегося в магнитное поле, представлен на рисунке 14 кривой Оа. Если теперь уменьшать напряженность магнитного поля, то будет уменьшаться и намагниченность. Однако при определенных значениях магнитного поля мы уже не получим тех значений намагниченности, которые соответствовали этим полям при нарастании поля. Другими словами, кривые намагничивания образца, соответствующие возрастанию и уменьшению поля, не совпадают.

Рисунок 14 - Петля гистерезиса ферромагнетика.

Как показывает опыт, кривая, соответствующая уменьшению поля, пойдет выше. Это явление отставания спада намагниченности от спада поля носит название магнитного гистерезиса.

В поле, равном нулю на кривой размагничивания, намагниченность не обращается в нуль, а имеет некоторое значение Jr, которое носит название остаточной намагниченности. Чтобы свести эту остаточную намагниченность к нулю, нужно приложить поле Нс, направленное противоположно.

Поле Нс, при котором остаточная намагниченность обращается в нуль, носит название коэрцитивного (задерживающего) поля или коэрцитивной силы.

Если продолжать увеличивать поле противоположного направления (отрицательное поле), то при полях, превышающих значение коэрцитивной силы, образец начнет намагничиваться в направлении, противоположном начальному. Эта отрицательная намагниченность с ростом поля будет расти и достигнет насыщения, численно равного величине насыщения при положительной намагниченности.

Уменьшая отрицательное поле, мы получим такую же картину, как и в случае размагничивания от насыщения при положительном поле, т.е. когда поле обратится в нуль, то отрицательная намагниченность в нуль не обратится, а будет равна -Jr. Чтобы свести эту отрицательную намагниченность к нулю, следует приложить положительное магнитное поле, равное коэрцитивному полю. Увеличивая положительное значение поля, мы получим положительную намагниченность, которая будет расти вместе с полем, пока не достигнет насыщения.

Таким образом, при изменении величины поля от максимального положительного до максимального отрицательного значения и обратно кривая, характеризующая намагниченность, образует петлю, которая называется петлей гистерезиса. Если мы снова повторим цикл, изменяя поле от +Нs до –Нs и обратно, то мы опишем ту же самую петлю. По такой петле мы будем «ходить» при многократном перемагничивании. Что касается кривой Оа, то ее можно получить снова только при условии предварительного полного размагничивания образца. Поэтому эта кривая носит название первообразной или первичной кривой.

Размагнитить образец можно, например, при помощи многократного переключения тока (коммутации) в катушке, при одновременном уменьшении его величины от значений, соответствующих магнитному насыщению образца, до нуля.

Вследствие магнитного гистерезиса при одном и том же значении магнитного поля намагниченность образца может иметь различные значения, которые зависят не только от напряженности магнитного поля, но и от предыстории образца.

Такая петля гистерезиса, при которой намагниченность изменяется от +Js до –Js, носит название предельной.

Она является одной из важных характеристик ферромагнетика. Материалы с большой коэрцитивной силой имеют широкую петлю гистерезиса. Они трудно размагничиваются и называются магнитно-жесткими материалами. Из таких материалов изготавливают постоянные магниты.

Магнитно-мягкие материалы, наоборот, обладают малой коэрцитивной силой и узкой петлей гистерезиса. Такие материалы используются в трансформаторах, статорах и роторах динамомашин и т.д.

В табл. 4 приводятся данные о коэрцитивных силах Нс и максимальной магнитной проницаемости mмакс некоторых магнитных материалов.

Таблица 4. Характеристика некоторых магнитных материалов

Материалы

mмакс

Нс, эрстед

Примечание

Железо

5 000

0,8 – 1,5

Магнитно-мягкие материалы

Кремнистая сталь* (4% Si)

10 000

0,2 – 0,6

Пермаллой (78% Ni, 21% Fe)

100 000

0,05

Супермалой (79% Ni, 15% Fe, 5% Cr)

900 000

0,004

Углеродистая сталь (0,65% С, 0,85% Мп)

42

Магнитно-жесткие материалы

Хромистая сталь (1,1% C, 6% Cr, 4% Mo)

74

Кобальтовая сталь (0,9% С, 5-6% W, 3-6% Cr, 35% Co)

250

Альни (12% Al, 25% Ni)

500

Страницы: 1 2