Фотолизное возбуждение лазерных сред

Материалы о физике / Эксимерные лазеры / Фотолизное возбуждение лазерных сред

Фотолизное возбуждение лазерной среды представляет собой случай, когда используется эксимерное излучение в некогерентном виде. В этом случае источник фотонов, возбуждаемый каким-либо способом (например, накачка электронным пучком, разрядом или их комбинацией) посылает излучение через окно в поглощающую активную среду.

Фотолизное возбуждение используется по трем основным причинам. Во-первых, такое возбуждение происходит без участия электронов. С помощью эксимерных систем может быть осуществлена как оптическая накачка (твердотельные и жидкостные лазеры), так и лазерная накачка (лазеры на красителях и мощных твердотельных систем).

Во-вторых, оптическая накачка может иметь преимущества в случае накопительных лазеров. Импульс излучения может быть сжат со времени накачки до времени высвечивания. Один из самых эффективных процессов получения возбужденных частиц - фотодиссоциация.

В-третьих, оптическая накачка эксимерными лазерами может быть отрегулирована по частоте. Это существенно для резонансно-накачиваемых твердотельных систем.

С помощью таких методов как оптическая накачка другой лазерной среды, вынужденное комбинационное рассеяние и параметрическое преобразование можно значительно расширить возможности перестройки частоты излучения эксимерных лазеров (например, на галогенидах инертных газов). Для оптической накачки обычно используют лазеры на красителях, поскольку они могут непрерывно перестраиваться в широком диапазоне длин волн. Стоит отметить, что при этом краситель подвергается значительно меньшему разрушению, чем при накачке импульсной лампой.

Вынужденное комбинационное рассеяние применялось для получения сдвига волны в ArF-, KrF - и XeF-лазерах. Использование околорезонансного комбинационного рассеяния в парах бария позволило перестроить длину волны XeF-лазера с 351 нм на 585 нм, причем КПД преобразования составил 80%. Благодаря тому, что исходное лазерное излучение не находится в резонансе с рассеивающей средой, усиление на смещенной вследствие комбинационного рассеяния длине волны почти такое же, как и усиление на исходной длине волны, в результате чего наблюдаются последовательно сдвинутые линии излучения. Таким образом, любая комбинация лазера и рассеивающей среды позволяет получить несколько линий излучения.