Формирование квантовых представлений.
.
Сначала это казалось просто остроумной гипотезой, решением частной задачи, но постепенно стало ясно, что эта дискретность порций энергии требует пересмотра принципов классической физики. Квантование энергии имеет смысл только для гармонических осцилляторов, в других задачах квант энергии определяется неоднозначно. Оказалось, что правильно считать, что ћ – квант действия. Но уже из существования кванта действия следовала взаимосвязь между динамическими переменными и переменными, характеризующими положение в пространстве, а это не укладывалось в классическую картину мира. Сразу стало очевидным, что аппарат аналитической механики пригоден для введения квантования.
Дальнейшим подтверждением квантовой теории были работы А.Эйнштейна о фотоэффекте (1905 г.) и модель атома Н.Бора (1913 г.). Фотоэффект – испускание веществом быстрых электронов под воздействием излучения. Оказалось, что энергия испущенных электронов не зависит от интенсивности излучения, а зависит от частоты. Это противоречило классическим представлениям. Эйнштейн предположил, что монохроматическое излучение состоит из квантов, причем энергия каждого кванта E = ħω. На основании этого предположения были получены результаты, которые прекрасно согласовывались с экспериментом.
Важным шагом вперед стала атомная теория Н.Бора. Классическая физика не смогла объяснить полученные эмпирическим путем спектральные законы – серии в спектрах излучения атомов. Планетарная модель атома, правильность которой подтверждалась в опытах Резерфорда, противоречила классической электродинамике: электроны должны были терять энергию при вращении вокруг ядра атома и падать на него. Бор сохранил планетарную модель атома, но ввел в нее квантовые принципы. Было сделано предположение, что электрон может находиться в состоянии с определенной энергией и в этом стационарном состоянии нет излучения. Излучение возникает только при переходе между состояниями. Принципиальный недостаток теории Бора заключался в искусственном наложении квантовых понятий на классические представления. Кроме того, теория Бора позволяла найти энергию стационарных состояний только для кругового движения. Развитием этой теории стали методы квантования Бора – Зоммерфельда, применимые для многомерного движения. Для определения различных квантовомеханических параметров, которые невозможно было вычислить с имевшимся аппаратом, Бор сформулировал замечательный принцип соответствия, который заключался в том, что для больших квантовых чисел классическая и квантовая физика должны давать одинаковые ответы, – например, по классически вычисленной интенсивности излучения можно вычислить вероятность перехода. В результате было создано то, что называется старой квантовой теорией.