Анализ последовательной цепи переменного тока

Мы показали, что при заданном токе напряжения пассивных элементов будут следующими:

Все рассмотренные элементы объединим в последовательную цепь; ток в ней известен. Определим параметры мгновенного значения ЭДС.

Неизвестная ЭДС также будет иметь вид гармонической функции.

-

Данное выражение представляет собой уравнение для электрической цепи, записанное по II закону Кирхгофа (для установившегося режима).

Полагая, в частности, ωt = π/2 и ωt = 0, получим RIm = Umcosφ; (ωL – 1/ωC)Im = Umsinφ.

Возведя первое и второе равенства в квадрат и сложив, получим:

[R2 + (ωL – 1/ωC)] Im2 = Um2

Откуда находим связь между амплитудами тока и напряжения:

Если в той же последовательной цепи заданной будет ЭДС: e = Emsinωt, то i = Imsin(ωt – φ).

Полученные соотношения можно использовать для расчёта мгновенных значений напряжения и тока в последовательной цепи, питаемой от источника гармонической ЭДС.

Рассмотрим несколько примеров.

Задана ЭДС.

Необходимо определить i(t), uR(t), uL(t), uC(t)

Задано uC (t)