Влияние ультразвука на ЭПР и фотолюминесценцию кристаллов ZnS

Материалы о физике / Влияние ультразвука на ЭПР и фотолюминесценцию кристаллов ZnS

Страница 1

Разнообразным эффектам, возникающим в кристаллах полупроводников и диэлектриков при их механическом возбуждении ультразвуковыми колебаниями, посвящено значительное количество работ, подробный обзор которых содержится в монографии [1]. Как оказалось, после достижения определенной мощности ультразвуковых колебаний, вводимых в различные кристаллы, в них возникает специфическое свечение, которое было названо акустолюминесценцией. Всесторонее изучение природы этого явления показало, что ультразвуковые волны приводят к значительным качественным и количественным изменениям в дефектном составе кристаллов, причина которых, в основном, связана с так называемыми акустодислокационными взаимодействиями. В плане изучения таких взаимодействий представляет интерес использовать разработанную в [2] методику, позволяющую с помощью метода электронного парамагнитного резонанса (ЭПР) исследовать тонкие эффекты, связанные с малыми перемещениями дислокаций в кристаллах сульфида цинка.

В настоящей работе исследовались кристаллы ZnS с примесью хрома, выращенные из расплава по методу Бриджмена под давлением инертного газа. Для исследований образцы вырезались в виде прямоугольных параллелепипедов размером 2х2х4 мм. Образцы подвергались кратковременному (10-15 минут) отжигу в атмосфере цинка при температуре 1200°С. Отжиг производился в вакуумированных запаянных кварцевых ампулах, в которые вместе с образцом помещался металлический цинк высокой чистоты. ЭПР-исследования проводились на радиоспектрометре RADIOPAN SE/X 2543 в Х-диапазоне при температруре 300 К. Регистрация спектров фотолюминесценции (ФЛ) проводилсь с помощью монохроматора МДР-12 и охлаждаемого фотоэлектронного умножителя ФЭУ-136 работающего в режиме счета одноэлектронных импульсов [3]. В качестве источника возбуждающего света использовался импульсный азотный лазер ЛГИ-505 с длиной волны 337 нм. Ультразвуковые (УЗ) колебания возбуждались в пьезопреобразователе из цирконат титаната свинца, затем передавались на алюминиевый концентратор, к которому приклеивался образец. Такая конструкция позволяла прикладывать УЗ колебания к образцу непосредственно как в резонаторе ЭПР спектрометра, так и во время регистрации спектров фотолюминесценции.

В [2] было показано, что при кратковременном высокотемпературном отжиге монокристаллов ZnS в атмосфере цинка происходит быстрая диффузия Zn по дислокационным трубкам вдоль линий ростовых дислокаций. При этом примесные ионы двухвалентного хрома, локализованные в атмосферах Коттрелла вне областей ридовских цилиндров, становятся стабильно однократно ионизованными без использования традиционной ультрафиолетовой подсветки. Такие ионы могут быть использованы в качестве парамагнитных зондов для регистрации малых перемещений дислокаций и процессов, происходящих в непосредственной близости от них. В данной работе эта методика была использована для изучения эффектов, возникающих в монокристаллах ZnS при действии ультразвуковых (УЗ) колебаний с мощностью, меньшей порога возникновения акустолюминесценции.

Исследования спектров ЭПР показали, что при воздействии на кристаллы УЗ колебаний g-фактор и ширина линий центров Cr+ и Mn2+ не изменяются. Интенсивность линий Mn2+ остается постоянной, в то время как для линий центров Cr+ наблюдается уменьшение интенсивности (на ~ 25%, Рис.1, а). После прекращения действия УЗ колебаний интенсивность линий ЭПР Cr+ восстанавливается не полностью (до ~ 95% от первоначального значения).

Рис.1. Зависимость интенсивности линии ЭПР центров Cr+ (а) и интенсивности максимума фотолюминесценции λ=450 нм (б) от времени воздействия ультразвуковых колебаний.

Наблюдаемые изменения сигнала ЭПР Cr+ могут быть объяснены следующим образом. Известно, что ростовые дислокации зарождались при высоких температурах в условиях, благоприятных для процессов диффузии и поэтому окружены густым облаком дефектов, которые ионизуются электрическими полями дислокаций и экранируют их заряд. В результате чего радиус ридовских цилиндров ростовых дислокаций в исходном состоянии имеет очень малую величину и объем ридовских цилиндров минимален. Ясно, что в этом случае, концентрация центров Cr+ должна быть максимальной. После смещения из исходного положения, дислокации частично выходят из компенсирующего их заряд облака, которое может перемещаться только в результате диффузии, скорость которой при комнатных температурах пренебрежимо мала. Радиус ридовских цилиндров вокруг дислокаций увеличивается, что и является причиной уменьшения количества ионов Cr+. Таким образом, полученные экспериментальные результаты свидетельствуют о том, что упругие механические колебания ультразвуковой частоты вызывают смещения ростовых дислокаций в пределах атмосфер Коттрелла. Понятно, что при этом происходит увеличение эффективных радиусов ридовских цилиндров, то есть рост "геометрического" заряда дислокаций, а значит под действием сильных электрических полей дислокаций оказываются значительно большие объемы кристалла чем в исходном состоянии. Тот факт, что после прекращения действия на кристалл ультразвуковых колебаний, количество центров Cr+ восстанавливается не полностью, свидетельствует о том, что какая-то часть дислокаций не возвращается в начальные положения и электрические поля дислокаций оказывают влияние на достаточно большое количество ионов хрома, то есть они остаются в состоянии повышенной электрической активности.

Страницы: 1 2 3 4 5