Плоское напряженное состояние

Материалы о физике / Основы сопротивления материалов / Плоское напряженное состояние

Страница 1

При исследовании напряженного состояния элементов конструкций наиболее часто приходится иметь дело с плоским напряженным состоянием. Оно встречается при кручении, изгибе и сложном сопротивлении. Поэтому на нем мы остановимся несколько подробнее.

Рассмотрим элемент, грани которого являются главными площадками.

Рис. 3.3

По ним действуют положительные напряжения и , а третье главное напряжение (направление перпендикулярно к плоскости чертежа).

Проведем сечение I – I, которое определит площадку (), характеризуемую положительным углом . Напряжения и по этой площадке будут определяться по формулам:

(3.2)

(3.3)

Сжимающие главные напряжения подставляют в эти формулы со знаком «минус», а угол отсчитывают от алгебраически большего главного напряжения.

Проведем сечение II – II, которое определит площадку , перпендикулярную площадке . Нормаль к ней образует с направлением угол

.

Подставив в формулы (3.2) и (3.3) значения угла , будем иметь

; (3.4)

. (3.5)

Совокупность формул (3.2) - (3.5) дает возможность находить напряжения по любым взаимно перпендикулярным наклонным площадкам, если известны главные напряжения.

Складывая равенства (3.2) и (3.4), обнаруживаем, что

, (3.6)

т. е. сумма нормальных напряжений по двум взаимно перпендикулярным площадкам не зависит от угла наклона этих площадок и равна сумме главных напряжений.

Из формул (3.3) и (3.5) видим, что касательные напряжения достигают наибольшей величины при , т. е. по площадкам, наклоненным к главным площадкам под углом , причем

. (3.7)

Сравнивая формулы (3.3) и (3.5), находим, что

(3.8)

Это равенство выражает закон парности касательных напряжений.

Проведем теперь еще два сечения (рис. 3.3): Сечение ІІІ – ІІІ, параллельное І – І, и сечение ІV – ІV, параллельное ІІ – ІІ. Элемент , выделенный четырьмя сечениями из элемента (рис. 3.4, а), будет иметь вид, показанный на рис 3.4, б. Оба элемента определяют одно и то же напряженное состояние, но элемент представляет его главными напряжениями, а элемент - напряжениями на наклонных площадках.

Рис. 3.4

В теории напряженного состояния можно разграничить две основные задачи.

Прямая задача. В точке известны положения главных площадок и соответствующие им главные напряжения; требуется найти нормальные и касательные напряжения по площадкам, наклоненным под заданным углом к главным.

Страницы: 1 2