Модель келдыша – файсала – риса
Исходная модель Келдыша. Цель этого раздела состоит в аналитическом приближенном решении нестационарного уравнения Шредингера, описывающего поведение атомарной системы во внешнем электромагнитном поле:
, (8)
Здесь - невозмущенный гамильтониан атомарной системы, а величина представляет собой потенциал взаимодействия атомарной системы с внешним электромагнитным полем. Предполагаются известными собственные функции и собственные значения энергии стационарного гамильтониана:
, (9)
Точное выражение для амплитуды перехода из начального связанного состояния атома или атомарного иона i в конечное состояние непрерывного спектра f под действием поля лазерного излучения имеет следующий вид ( напомним, что всюду используется атомная система единиц, в которой постоянная Планка, масса электрона и его заряд предполагаются равными единице):
, (10)
Здесь конечное состояние описывается точной волновой функцией . Выражение (10) эквивалентно исходному нестационарному уравнению Шредингера (8).Вероятность связанно-свободного перехода за время t дается квадратом модуля выражения (10).
Начальное состояние дискретного спектра атома в (10) является невозмущенным и берется из решения уравнения (9).Взаимодействие атома с электронным полем бралось Келдышем в дипольном приближении (так как размеры атома малы по сравнению с длиной волны электромагнитного излучения), используя так называемую калибровку «длины»
, (11)
Здесь F – вектор напряженности электромагнитного поля электромагнитной волны. Предполагалось, что это поле мало по сравнению с характерным атомным полем рассматриваемой атомной системы [2].
Основная идея Келдыша заключалась в том, чтобы заменить неизвестную точную волновую функцию конечного состояния на так называемую волковскую волновую функцию, в которой пренебрегается полем атомного остова и учитывается только поле электромагнитной волны. В калибровке длины этой волновая функция имеет следующий вид
, (12)
Здесь векторный потенциал электромагнитного поля связан с напряженностью поля известным соотношением
, (13)
Указанная волновая функция (11) описывает электрон, колеблющийся в поле электромагнитной волны и имеющий канонический импульс . Средняя (за период колебаний) энергия колебаний Eкол электрона в поле монохроматической электромагнитной волны с частотой равна (для поля линейной поляризации) или (для поля циркулярной поляризации).
Тогда из (10) для амплитуды связанно-свободного перехода получим приближенное выражение:
, (14)
Энергия фотона лазерного излучения предполагается в подходе Келдыша малой по сравнению с потенциалом ионизации атома (или атомарного иона):
,
Это условие, вместе с условием малости напряженности поля по сравнению с атомной напряженностью, позволяет вычислить аналитически амплитуду перехода, используя метод перевала при интегрировании по времени. Конечно. Такой подход наиболее приемлем для короткодействующего потенциала, для которого только волновая функция S - состояния непрерывного спектра не является плоской волной.