Методика экспериментальных исследований

Основной целью проведенных экспериментов было исследование влияния лазерного излучения на электропроводность диэлектрических жидкостей и изучение практической возможности реализации электроэрозионных явлений в диэлектрической среде. Эксперименты проводятся для исследования влияния следующих параметров:

· Расстоянием между электродами;

· Падением напряжения на электродах;

· Мощностью ЛИ.

Сам эксперимент состоял из двух основных частей и заключался в следующем:

1. Экспериментальная ячейка (ЭЯ) заполнялось изучаемой жидкостью (бидистиллированная вода, спирт, трансформаторное масло) затем подавалось напряжение от 0 В. до 150 В. и мы фиксировали пробойное напряжение для данного типа жидкости, при котором начинается эрозия.

2. Экспериментальная ячейка (ЭЯ) заполнялось изучаемой жидкостью (бидистиллированная вода, спирт, трансформаторное масло) затем подавалось напряжение от 0 В. до 150 В. и в зоне между двумя электродами фокусировался луч лазера различной мощности от 10 Вт до 100 Вт.

3. После проведения экспериментальной части работы проводится обработка данных и построение графиков вольт-амперной зависимости.

Рисунок 20. График вольт-амперной зависимости изучаемого вещества, как некая функция от параметров (мощности лазера, межэлектродного зазора, приложенного к электродам напряжения)

Необходимо отметить экспериментальные сложности в исследовании лазерного пробоя, затрудняющие получение воспроизводимых порогов, таковы:

1. Невоспроизводимость временной и пространственной структуры лазерного импульса вследствие многомодовой природы мощных импульсов. Эта проблема может быть решена тщательной поперечной и продольной селекцией мод.

2. Влияние поглощающих включений (примесей). При линейном поглощении в интенсивном лазерном поле энергия вкладывается столь быстро, что температура поглощающего включения может возрасти на тысячи градусов и вызвать локальное расплавление и испарение вещества. Термическое напряжение может вызвать разрушение материала, в котором находится включение. Проблемы теплопроводности и механического напряжения могут быть решены классическими методами. Разумеется, многое зависит от размеров поглощающего включения, от длительности лазерного импульса и от оптической толщины включения. На практике порог разрушения часто определяется субмикроскопическими поглощающими частицами; например, в лазерных стержнях из неодимового стекла всегда имеются частички платины. Такие включения могут быть удалены. Обусловленный ими порог, конечно, не связан с фундаментальными свойствами вещества, и в идеально чистом веществе порог должен быть гораздо выше. В экспериментах по лазерному пробою важно уметь либо удалять эти включения, либо отличать их влияние от эффектов поглощения в истинно прозрачных материалах.

3. В идеально прозрачных материалах порог разрушения часто определяется явлением самофокусировки. Примером могут служить хорошо известные характерные нитевидные следы разрушений в оптических стеклах. Хотя в области самофокусировки и могут иметь место электрический пробой и лавинная ионизация, порог, наблюдаемый в таких случаях, определяется скорее критической мощностью самофокусировки, нежели пороговой плотностью мощности электрического пробоя. При количественных исследованиях пробоя необходимо избегать не только самофокусировки, но и малейшей деформации лазерного луча из-за изменения коэффициента преломления, зависящего от интенсивности излучения.