Метод лоренцевой электронной микроскопии

Страница 2

Рисунок 54. Доменная структура тонкой ферромагнитной плёнки при её размагничивании под различными углами к оси лёгкого намагничивания (направление осей лёгкого намагничивания показано стрелками)

Из сказанного вытекает, что доменная структура тонких ферромагнитных пленок существенно зависит от способа изменения поля. На рисунке 54 показана доменная структура железной пленки при размагничивании ее под различными углами к оси легкого намагничивания. Как видно из этого рисунка, доменная структура при размагничивании под разными углами оказывается совершенно различной.

На рисунке 55 показан процесс намагничивания вдоль легкой оси тонкой железной пленки путем смещения границ. Светлые домены растут за счет темных. При намагничивании под углом к оси легкого намагничивания намагничивание осуществляется не только путем смещения границ, но и перестройки доменной структуры (рисунок 56).

Рисунок 55 - Намагничивание тонкой ферромагнитной плёнки путём смещения доменных границ.

Рисунок 56 - Намагничивание под углом к лёгкой оси (перестройка доменной структуры)

В отсутствие поля доменная структура тонких ферромагнитных пленок обладает высокой температурной стабильностью. На рисунке 57 показана доменная структура железной пленки толщиной 1600Ǻ при различных температурах (от –100 до +6500 С). Как видно из рисунка, и исследованном интервале температур доменная структура не изменяется, что весьма важно при использовании тонких ферромагнитных пленок в счетно-решающих системах.

Рисунок 57 - Доменная структура тонкой железной плёнки при различных температурах: а – 100; б – 200; в – 250; г – 350; д – 500; е - 650ºС

Что касается граничных слоев, то в достаточно толстых пленках они ничем не отличаются от граничных слоев в массивных монокристаллах. В таких граничных слоях вектор намагниченности остается в плоскости граничного слоя и в центральной его части оказывается направленным перпендикулярно поверхности пленки. Такие границы называют границами Блоха.

В очень тонких ферромагнитных пленках вектор намагниченности в граничном слое все время остается в плоскости пленки, медленно поворачиваясь на 1800 в случае антипараллельных доменов. Такие границы получили название границ Нееля.

При промежуточных толщинах (для пермаллоевых пленок от 900 до 400Ǻ) структура граничных слоев оказывается более сложной [7, с.136-141].

Доменную структуру тонких магнитных пленок, сквозь которые проходит электронный пучок, можно наблюдать с помощью электронного микроскопа. Принцип метода иллюстрируется на рисунке 58. Электронный пучок, проходя через тонкую пленку, испытывает влияние силы Лоренца, вызванной спонтанной намагниченностью, и отклоняется в разных доменах на разные углы. В результате в фокальной плоскости проекционной электронной линзы, расположенной на некотором расстоянии от тонкой пленки, образуется изображение доменных стенок в виде черных или светлых линий. Такой метод называют методом лоренцевской электронной микроскопии. На рисунке 59 показано изображение доменов в тонкой пленке из пермаллоя толщиной 600Ǻ, полученное таким методом.

Рисунок 58 - Принцип метода лоренцевой микроскопии.

Рисунок 59 - Изображение доменов в тонкоплёночном образце из пермаллоля имеющем толщину 600Ǻ, полученное по методу лоренцевой микроскопии.

Если фокус проекционной линзы, применяемой в лоренцевской микроскопии, находится на бесконечности, электронные пучки, имеющие одно направление, образуют точечное изображение (дифракционное пятно), что позволяет одновременно наблюдать распределение направлений намагниченности по всему образцу. На рисунке 60 видно, как изменилось направление электронного пучка при прохождении через монокристаллическую тонкую пленку железа, параллельную плоскости (001). Из рисунка 60 видно, что в указанной плоскости имеется четыре направления намагниченности. Таким методом можно получать информацию о распределении спинов в доменных стенках. Преимущество лоренцевской микроскопии заключается в том, что она позволяет повысить увеличение, однако у нее есть и недостаток, состоящий в том, что исследуемые образцы должны иметь небольшую толщину, поскольку описанный метод применим только к образцам, сквозь которые может проходить электронный пучок [9, с. 165-167].

Страницы: 1 2 3