Лазеры на двухатомных галогенах

Материалы о физике / Эксимерные лазеры / Лазеры на двухатомных галогенах

Между лазерами на гомоядерных молекулах галогенов и лазерами на эксимерных соединениях атома инертного газа и атома галогена имеется значительное сходство. Однако, они относятся к разным типам устройств.

Лазеры на двухатомных галогенах, так же как лазеры на моногалогенидах инертных газов и лазеры на галогенидах ртути, генерируют на переходах между верхним состоянием ионного типа и нижним ковалентным состоянием. Таким образом, и характеристики этих лазеров должны быть аналогичными. Нижние состояния моногалогенидов инертных газов (за исключением XeF) являются отталкивательными, что облегчает получение инверсии населенностей. Однако гомоядерные молекулы галогенов имеют тенденцию к переходам на высокие колебательные уровни связанных нижних электронных состояний. Поэтому в них инверсия определяется быстрой колебательной и электронной релаксацией.

Основные кинетические процессы, протекающие в лазерах на галогенидах, представлены на рисунке 3.

Лазерная накачка электронным пучком или разрядом способна быстро и эффективно создавать первичные состояния во всем объеме газа. В реакциях с передачей энергии от примеси галогену образуются возбужденные атомы галогенов X*. Возможной реакцией, в которой создаются другие первичные состояния, является реакция с одновременным образованием отрицательных ионов X - (за счет диссоциативного прилипания электронов низкой энергии) и галогенсодержащих положительных ионов X+ или RX+. Реакции ион-ионной нейтрализации (процесс 1) могут затем произвести возбужденные состояния гомоядерных галогенов. Возбужденные нейтральные атомы могут образовывать молекулы галогенов путем гарпунных реакций (процесс 2).

Рисунок 3. Схема основных кинетических процессов, связанных с возникновением генерации в двухатомных галогенах

При высоком давлении газа в рабочем объеме быстрая электронная и колебательная релаксация приводит к заселению наинизших уровней ионных термов. Чтобы эти процессы оказались эффективными, молекула не должна иметь отталкивательных потенциальных кривых, соответствующих атомам в основных состояниях и пересекающих потенциальные кривые связанных верхних состояний. Дезактивация верхних уровней происходит за счет излучения (процесс 4) и тушения (процесс 5), первый из которых является желательным, а второй - нежелательным процессом. Из спектроскопических измерений следует, что излучательные процессы заканчиваются на высоких колебательных уровнях нижней потенциальной кривой, которая не представляет собой основное состояние. Последующие столкновения в газе способствуют быстрой колебательной релаксации или даже диссоциации нижнего уровня, поддерживая таким образом инверсию населенностей. К заселению верхнего лазерного уровня могут приводить несколько различных процессов. Нижний уровень не обязательно является самым низким энергетическим состоянием молекулы.

На рисунке 4 приведены спектры испускания галогенов.

Рисунок 4. Спектры испускания галогенов

В случае йода спектр был снят за 1, 3 и 5 импульсов, а в случае брома - за 1, 5 и 10 импульсов. Длинноволновая часть импульсов характеризуется большим количеством подавленных импульсов.